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Abstract

Image Reconstruction for a Positron Emission Tomograph

Optimized for Breast Cancer Imaging

by

Patrick Rommel Gonzalez Virador

Doctor of Philosophy in Physics

University of California at Berkeley

Professor Kam-Biu Luk and

Doctor William Moses , Cochairs

I perform image reconstruction for a novel Positron Emission Tomography

camera that is optimized for breast cancer imaging. This work addresses for the

first time, the problem of fully-3D, tomographic reconstruction using a septa-less,

stationary, (i.e. no rotation or linear motion), and rectangular camera whose Field

of View (FOV) encompasses the entire volume enclosed by detector modules capable

of measuring Depth of Interaction (DOI) information. The camera is rectangular

in shape in order to accommodate breasts of varying sizes while allowing for soft

compression of the breast during the scan. This non-standard geometry of the camera

exacerbates two problems: a) radial elongation due to crystal penetration and b)

reconstructing images from irregularly sampled data. Packing considerations also

give rise to regions in projection space that are not sampled which lead to missing

information. I present new Fourier Methods based image reconstruction algorithms

that incorporate DOI information and accommodate the irregular sampling of the

camera in a consistent manner by defining lines of responses (LORs) between the

measured interaction points instead of rebinning the events into predefined crystal
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face LORs which is the only other method to handle DOI information proposed

thus far. The new procedures maximize the use of the increased sampling provided

by the DOI while minimizing interpolation in the data. The new algorithms use

fixed-width evenly spaced radial bins in order to take advantage of the speed of

the Fast Fourier Transform (FFT), which necessitates the use of irregular angular

sampling in order to minimize the number of unnormalizable Zero-Efficiency Bins

(ZEBs). In order to address the persisting ZEBs and the issue of missing information

originating from packing considerations, the algorithms a) perform nearest neighbor

smoothing in 2D in the radial bins b) employ a semi-iterative procedure in order

to estimate the unsampled data and c) mash the “in plane” projections, i.e. 2D

data, with the projection data from the first oblique angles, which are then used to

reconstruct the preliminary image in the 3D Reprojection Projection algorithm. I

present reconstructed images of point sources and extended sources in both 2D and

3D. The images show that the camera is anticipated to eliminate radial elongation

and produce artifact free and essentially spatially isotropic images throughout the

entire FOV. It has a resolution of 1.50±0.75 mm FWHM near the center, 2.25±0.75

mm FWHM in the bulk of the FOV, and 3.00±0.75 mm FWHM near the edge and

corners of the FOV.

Professor Kam-Biu Luk and
Doctor William Moses
Dissertation Committee Cochairs
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Chapter 1

Introduction

1.1 Breast Cancer: Motivation

Breast cancer is the leading cause of cancer deaths in women in the United

States. Estimates of new cases of breast cancer range from 90,000 to 182,000 each

year, indicating that approximately 8% of the women born in the United States

will develop this disease [1][2]. Various studies have shown that mass screening for

breast cancer with x-ray mammography has decreased the rate of mortality in women

by 30%, and as much as 70% in women over 50 [3]. The low cost of planar x-ray

mammography (less that $100) coupled with its 100µm resolution make it an effective

method for mass screening.

The Positron Emission Mammography (PEM) project was initially con-

ceived to complement x-ray mammography and assist in the treatment and manage-

ment of breast cancer. Originally, the project had three goals:

• to determine whether nuclear medicine techniques can be used as an alternative

to biopsy when suspicious lesions are observed in a mammogram,

• to determine whether a Positron Emission Tomography (PET) camera can be

used to asses the involvement of the axillary nodes if breast cancer is diagnosed
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• to build a PET camera that can monitor the progress of the disease and deter-

mine the efficacy of treatment

The first motivation of this project is to determine whether PET and nuclear medicine

techniques can be used as an alternative to biopsy. X-ray mammography is a struc-

tural imaging modality that measures the attenuation of an x-ray beam as it passes

through the breast. While its resolution allows for the detection of submillimeter

calcifications that are tell-tale signs of breast cancer, the malignancy of aggregate

masses in the breast that show no microcalcifications are difficult to assess based

solely on their appearance on x-ray film. In particular, this problem is acute in

cases of radiologically dense breasts that may have regions which appear as suspi-

cous masses but are otherwise normal tissue. In fact, 20%-80% of masses seen in

mammograms are benign [2]. Therefore, the detection of a suspicious lesion in a

mammogram is often followed by a biopsy to determine malignancy of the mass.

There are many reason why biopsy is undesirable. It is time consuming and

extremely uncomfortable for the patient. Hard compression of the breast is necessary

during the incision of the needle and throughout the entire extraction of the tissue to

be examined. The continuous stereotactic x-ray fluoroscopy required for guiding the

needle in the breast significantly increases the radiation dose to the patient. Tumors

are missed approximately 10% of the time. The scarring that may occur as a result

of the biopsy may make subsequent mammograms difficult to interpret because scar

tissue often has different radiological properties from normal tissue. The camera

discussed in this thesis will be able to determine the malignancy of a suspicious mass

in the breast and may obviate the need for biopsy.

The second motivation for this project is to build a camera that may be used

for the treatment and management of breast cancer in the unfortunate circumstance

that the disease is diagnosed. Axillary node involvement is an indicator of the extent

of the disease and thus plays a major role in determining the best treatment of the

disease. The prognosis is favorable if the cancer has not metastisized to the axillary
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nodes which are located at the outside edges of the breast near the armpits. It is

extremely unfavorable otherwise. Currently, the only course of action to determine

the health of the nodes are excision and biopsy since imaging the structure of the

nodes is insufficient to determine whether the cancer has metastisized to the sites.

The nodes may be enlarged for reasons other than the invasion of malignant tissue

and so it is important to determine their biochemical properties. The removal of the

nodes often cause bad side effects. The optimizations that are done on the PEM

camera for imaging the breast make it ideal for imaging the axillary nodes.

The final motivation for the project was to build a camera that could aid

monitor the progress and treatment of breast cancer. In the event that surgery

becomes necessary, scar tissue may further hinder interpretation of further x-ray

mammograms. The optimized camera could continue to image the breast and scan

for malignant tissue in spite of the scarring.

1.2 Positron Emission Tomography and Oncology

PET is a medical imaging technique that measures the biochemical activity

of tissue, represented by the local concentration of a radiotracer injected into the

patient. Radiotracers are biologically active and radioactively labeled drugs that

are engineered to study and image specific tissue and biochemical processes [4]. In

PET, these radiotracers are positron emitters (β+ decay). The ejected positron

traverses a short distance in the tissue, depending on the radiotracer used, and

forms positronium with an electron. The two particles annihilates via e+e− →
γγ, producing two nearly back-to-back 511 keV photons1, in accordance with the

conservation of energy and momentum. These photons are detected by a pair of

radiation detectors that constrain the location of the radiotracer to be along the

line connecting them. This line is called a line of response (LOR) or a chord. The

collection of activated chords constitute the data acquired in a PET scan that are
1The positron annihilates before themalization.
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subsequently reconstructed into an image.

The use of PET scanners in oncology for the study and evaluation of tu-

mors is among the fastest growing areas in nuclear medicine [5]. The success of PET

in imaging glucose uptake in the brain, in particular in regions of the brain where

increased metabolism is observed as a result of performing tasks (e.g. speech), en-

couraged many radiologists to apply the method in detection of tumors, which, as

evidenced by their rapid growth, also have increased metabolism. The promise of im-

proved resolution by up to a factor of five over its single photon analog (Single Photon

Emission Computed Tomography or SPECT) and the possibility of more accurate

quantitation have contributed to the excitement of applying PET in oncology.

Increased glucose uptake is among the characteristics of tumor cells. There

are many reasons proposed for this phenomenon and this is an active area of research

in Oncology; but chief among these reasons is the Pasteur Effect: the facilitation of

glucose metabolism in cells by the lack of oxygen. While investigating the fermenta-

tion process in winemaking, Louis Pasteur observed that cells consumed more glucose

in the absence of oxygen. The reason for this phenomenon is that while complete

aerobic glycolysis produces 36 molecules of ATP, the energy source for cells, anaero-

bic glycolysis produces only two molecules of ATP [6]. Thus, cells need more glucose

to sustain their energy requirements in anaerobic environments. The fast growth of

tumor cells often outpaces the production of new blood vessels resulting in an oxy-

gen starved environment. Warburg confirmed the occurance of the Pasteur Effect in

cancerous tissue in 1931 [7].

The radiotracer 18F-flouro-2-deoxyglucose (FDG) is the primary reason be-

hind the recent interest in PET for clinical application in oncology [8]. FDG (Fig. 1.1)

is a sugar analog where a hydroxyl group OH is replaced by 18F, a positron emitter.

The location of the 18F, in the 2-position in the carbon ring, prohibits the conversion

of the glucose into glycogen, allowing FDG to accumulate in the cell. This mecha-

nism makes FDG more “sticky” than either 11C-labeled or 15O-labeled compounds

which are also used in PET in oncology.
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Figure 1.1: FDG. 18F-flouro-2-deoxyglucose (FDG) is the primary reason behind the
recent interest in PET for clinical application in oncology.

1.2.1 Positron Emission Mammography

Positron Emission Mammography (PEM) is the application of PET in the

diagnosis, treatment and management of breast cancer. Several other PEM cameras

have been proposed in recent years which, like our own camera, are optimizations of

conventional PET design. These include the MAMPET [9] and the McGill University

PEM [10]. The latter camera is designed to fit into an X-ray mammography unit. It is

composed of two banks of PET modules, one attached to the base of the mammogram

unit while the other to the X-ray tube. It cannot perform tomographic reconstruction

because it does not completely surround the breast. The requirement of a complete

set of projections for tomographic reconstruction is discussed in Chapter 4. Interest

in applying PET in breast cancer has been fueled by reports that uptake of FDG in

breast tumors relative to normal tissue can be as high as 8:1 [11].

1.3 Challenges in PEM Image Reconstruction

The optimization that we have done in order to successfully use PET in

mammography lead to challenges in image reconstruction. There are primarily two

main issues that need to be addressed: a) the inclusion of the Depth of Interaction
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(DOI) information into the reconstruction algorithm, and b) the non-conventional

geometry of the detector. The camera’s geometry require fully-3D reconstruction

because it will not have septa. The camera’s large axial extent complicates this

matter as I shall discuss in Chapter 5. In addition, there will be gaps between detector

modules that will prevent the camera from sampling some regions in projection space.

In this thesis, I address these challenges by developing algorithms that can be used

to reconstruct images from data acquired with the PEM camera. My goal is to

reconstruct qualitatively sound images from a simulated PEM camera and as such, a

major component of this disertation is the modeling of the camera via Monte Carlo

simulation. I will characterize the reconstructed images semi-quantitatively to serve

as a guide for future work in trying to extract quantitative information from the

camera. It is my hope that these algorithms will be used when the construction of

the camera is completed.

1.3.1 Depth of Interaction and Radial Elongation

Radial Elongation is the degradation of image resolution caused by the

penetration of the 511 keV photons into crystals. It is the result of associating events

with the incorrect LOR’s. Fig. 1.2 (A) shows how penetration leads to mispositioning

of events and thus degradation of resolution. Annihilation A is associated with the

correct LOR while annihilation B is not (dotted line). The anticipated Point Spread

Functions (PSF), the shapes of the reconstructed point sources located at radiotracers

A and B, are beneath the tomograph ring. Note that event mispositioning occurs

only when the photons enter the crystals obliquely, worsening with increasing angle

between the photon and the long axis of the crystal. For circular tomographs, point-

source resolution can be degraded by up to a factor of three at distances of half

the radius of the camera where an incident photon can penetrate the crystals at π
6

radians [12].

Measuring the DOI information is essential to reconstructing artifact free
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Figure 1.2: Radial Elongation. Resolution of PET cameras degrade away from the
center of the tomograph. (B) is a reconstructed point source at the center of a 20.0
cm radius tomograph while (C) is a reconstructed point source at r = 10.0 cm.
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images for the PEM camera. In order to achieve greater detector sensitivity over

conventional PET cameras, the detector modules are packed as closely as possible to

the breast being imaged. Without DOI, radial elongation will prohibitively degrade

the resolution away from the center of the camera, resulting in varying resolution in

the FOV and causing blurred reconstructed images. The DOI information eliminates

radial elongation. Figs. 1.2 (B) and (C) are reconstructions of point sources at r = 10

cm of a 20 cm radius tomograph. Image (B) is reconstructed with DOI information

while image (C) is reconstructed without DOI information.

Radial blurring is particularly acute in the PEM camera because the breast

will occupy the entirety of the field of view (FOV). Conventional PET cameras

minimize blurring by limiting the useful FOV to regions close to the center of the

camera where the effect of crystal penetration is small. A FOV that is half the

tomograph’s radius is common. With the rectangular geometry of the PEM camera,

we expect that at least a third of the photons detected will have penetrated the

crystals at angles > π
6 radians.

While there have been several attempts at detector designs that measure

DOI information [13][14][15], little work has been done to determine the best way to

incorporate the DOI information into the reconstruction algorithm. Moses et. al [16]

have proposed rebining the LOR measured with DOI into LORs that are measured

without DOI information. While this procedure partially corrects penetration2 it

does not take advantage of the increased sampling provided by the DOI. A DOI

resolution of σDOI effectively increases the number of LOR by (LcrystalσDOI
)2, i.e. half

a crystal length DOI resolution quadruples the number of LOR. I will discuss a

method of incorporating DOI information that uses this increased spatial sampling.

It minimizes the interpolation that is required if the events were merely rebined.

The incorporation of the DOI information into the image reconstruction is one of the

contributions of this thesis to the field of medical imaging.
2Rebinning associates the true chord with the closest chord that can be defined by crystal faces
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1.3.2 Non-standard Geometry

Another challenge in reconstructing images from data taken from the PEM

camera originates from the non-standard geometry of the camera. In order to max-

imize the sensitivity of the camera, it is packed as tightly as possible to minimize

gaps between modules. This is achieved by packing the modules into a rectangular

camera. The shape of the camera also accomodates breasts of varying sizes and al-

lows for the soft compression of the breast during the scan. Compression prevents

the breast from moving which would result in motion artifacts in images.

While there are several advantages to having a rectangular camera, its shape

breaks the circular symmetry assumed by Fourier Image Reconstruction methods.

The modules of the camera sample the object in the FOV irregularly, making the

image reconstruction difficult at best. The extension of the FOV to include the entire

region enclosed by the camera modules excacerbates the irregular sampling. Conven-

tional tomographs with irregular sampling rebin the data into a regular samples by

interpolation. Interpolation of data to force regular sampling in function reconstruc-

tion generally gives poor results [17]. Note that even if the camera were circular, the

extension of the FOV will still result in irregular sampling of the object. This is due

to the finite widths of the crystals in the detector modules. The spacing between the

LOR decreases as chords farther and farther from the center are considered. Indeed,

this is another reason why conventional tomographs limit the FOV to regions close

to the center where sampling is approximately regular.

Another challenge in reconstructing images from the PEM camera is the

fact that the camera will be without septa. Septa are used to reduce scattered

radiation and so preferentially accept events that lie within a predefined plane of the

detector. This is done so that a three dimensional image can be reconstructed by

stacking 2D images that can be quickly reconstructed. The use of septa, however,

greatly decreases the acceptance and sensitivity of the camera. The absence of septa

in the camera necessitates the use of fully-3D reconstruction. Standard algorithms
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which are used for fully-3D reconstruction assume cameras with small axial extent,

commonly θ ≈ .25 radians. The PEM camera has over twice this axial extent,

rendering approximate algorithms unusable.

Finally, due to packing limitations, the PEM camera will have gaps between

the detector modules. These gaps will cause portions of the projection space to be

unsampled making reconstruction nearly impossible. Cameras that have gaps in

their modules [18] have unsampled projection-space locations that are contiguous,

making them easier to deal with. In comparison, the unsampled locations in the

PEM projection space are scattered about the entire space.

1.4 Outline

The work that I describe in this dissertation, other than the description

of the hardware and the simulation of the camera, can be thought of as finding a

transfer function between “bad data space” and “reconstructable data space.” I

use standard Filtered Backprojection algorithms that are modified to address the

particular idiosyncracies of the camera caused by its non-standard geometry and its

capability to measure DOI information. As such, the chapters containing the bulk

of the novel works that I have done are structured in the following way: a) I discuss

the standard procedures that would be used if the PEM camera were a standard

PET machine; b) describe why these procedures, if left unmodified, will produce

artifacts in the reconstructed images; c) discuss the modifications needed to ensure

artifact-free images.

This thesis is outlined as follows:

• Chapter 2 - Image Reconstruction in PET: I present a novel view of

the connection between the data acquisition process in PET and the Radon

Transform, whose inversion is the basis for the theory of analytic image recon-

struction. This view introduces a new mathematical formalism for the System

Matrix by expressing it as the product of the Response Function of the camera,
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the basis for Natural Pixel Formulation of Image Reconstruction [19], and the

Chord Distribution which I define as the set of chords between two detectors

in projection space. It is widely assumed that the Line Integral formulation of

PET data is the System Matrix taken to some limit, and I suggest a formal-

ism by which this limit can indeed be viewed as the limit of infinitely small

detectors. While I focus on Fourier Inversion methods, I give a discussion of

iterative methods in 2D for completeness.

• Chapter 3 - The Camera: I describe the components of the detector as

well as how it is contructed. I begin by discussing the new scintillator we use,

Cerium-doped Lutetium Orthosilicate (LSO), and some of its properties. I then

discuss the photodectors, the construction of a module, and the electronics for

data acquisition and processing. The measurement of the DOI information is

essential to the success of the camera as an imaging device; I explain how it is

obtained.

• Chapter 4 - Reconstruction in 2D: I begin the investigation of reconstruc-

tion algorithms for the camera by limiting the dimensionality of the problem

to 2D. While the camera is operated only in fully 3D-mode, 2D images can be

reconstructed by considering only events that are coplanar within the crystal

planes (an example of software collimation). This allows me to consider the

various sampling issues that needed to be addressed without the complications

of fully 3D image reconstruction. In this chapter, I describe the simulation

with which I generate the events and data sets that I reconstruct.

The PEM camera violates key assumptions used in standard filtered backpro-

jection techniques, namely regular sampling of both radial and angular vari-

ables. In order to take full advantage of the DOI capability of the camera, which

greatly increases the sampling of the FOV in all but the φ = 0, π2 directions,

I use fine linear sampling. Fine linear sampling produces ZEBs that result in
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gross streak artifacts in the reconstructed images. These ZEBs are minimized

if irregular angular sampling is employed. In order to reconstruct artifact-free

images from PET data whose angular variable is irregularly sampled, I have

developed procedures that accomodate the irregular angular sampling. These

procedures involve multiplying the filtered data by a factor that is proportional

to the bin width of the angular samples. The scaled data are backprojected

around the center of the projection angle a number of times that is deter-

mined by the ratio of the width of the angular bin to the minimum angular bin

width. The chapter culminates with 2D images reconstructed with these new

procedures and their characterization.

• Chapter 5 - Reconstruction in 3D: This chapter extends the 2D recon-

struction techniques developed in Chapter 4 into 3D. I describe the X-Ray

transform and how 3D reconstruction is done with conventional cameras. I

discuss issues regarding normalization, the optimizations that are needed for

the succesful 3D reconstruction of images with the PEM camera, and the new

techniques that are used in order to address problems that have not surfaced

in the 2D reconstruction.

In this chapter, I develop procedures by which the “useful” axial extent and

necessary polar sampling of any 3D camera can be determined by using signal

to noise ratios of reconstructed images. Using these procedures, I determine

a useful axial extent for the camera that is large enough to prohibit the use

of more conventional fast 3D reconstruction techniques. Therefore, I employ

the standard but slower 3DRP reconstruction algorithm. However, as in the

case of 2D reconstruction with the PEM, it is necessary to modify the standard

algorithm in order to ensure that the reconstructed images are artifact free.

The modifications involve a mashing of the “in-plane” data with the first

oblique projections. This is neccessary so that the techniques that I have
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developed in Chapter 4 can be used to estimate the premilinary 2D image from

which the reprojected data is calculated. The sampling parameters that I have

previously determined to be essential for high resolution reconstruction neces-

sitates another new procedure in the normalization of the reprojected data.

In essence, the reprojected data is “denormalized” so that it can be properly

compared with the acquired data to determine the scale factor between them.

Finally, I show that the missing data resulting from a) the truncation due to in-

complete angular coverage3, b) the gaps between modules, and c) the definition

of 511 keV hits to be at the center of DOI bins, can be addressed consistently

by treating all of them as trucated data to be estimated by the properly scaled

reprojection data.

• Chapter 6 - Reconstructed Images: This chapter shows reconstructions

of simulated phantoms scanned by a simulated “physical” PEM detector, i.e.

with realistic energy and DOI resolutions. I give results of image resolution

and noise characterization studies on the images. The chapter culminates with

an extended source phantom made up of ellipsoids just as the chapter on 2D

reconstruction techniques.

• Chapter 7 - Conclusions and Future Directions: I conclude with closing

remarks, a summary of the results, a list of the limitations of and possible

future directions for this work.

• Appendix A - The Fourier Rebinning Method: The Exact Fourier Re-

binning Method (FOREX) is a promising algorithm that may be used to recon-

struct images for the PEM camera. I believe that it will be able to consistently

address many of the issues that make analytical reconstruction of data from

the PEM camera problematic. While its forerunner algorithm, the FORE algo-

rithm, became available during my investigation, it required key assumptions
3The PEM camera, for obvious reasons, cannot completely enclose the breast.
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that are not applicable for the PEM camera. The FOREX algorithm did not

become available until the end of my search for reconstruction algorithms for

the PEM camera. Both of these algorithms rebin the “off plane” events into

the “in plane” projections and reconstruct the 3D object by stacking planes of

2D reconstructed images. I discuss the theoretical basis for the algorithm in

this appendix.
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Chapter 2

Image Reconstruction in PET

In this chapter, I introduce the Radon Transform and discuss its relation to

data acquired in PET. I discuss several of its properties that are useful for the inver-

sion and image reconstruction, and elucidate its relation to the Fourier transform.

Finally, I introduce the Central Slice Theorem which is essential in the inversion

of the Radon Transform. The inversion of the Radon Transform is the basis of the

Fourier Inversion Methods of Medical Imaging. Most of the formulation and notation

used in this chapter are expressedly 2D, but generalizing into higher dimension (3D

in particular) is not too difficult. The inversion of the Radon Transform, however,

will be in n dimensions, in anticipation of the following chapter.

2.1 PET and Radon Transform

2.1.1 System Matrix

The data collected during a PET scan is a realization of the application of

a functional to the distribution of radionuclides in the object being scanned. Con-

sider the data recorded from a PET event: the line connecting a pair of detectors

simultaneously hit by 511 keV photons. This line can be parametrized by s, its

perpendicular distance from the origin, and φ, the angle it makes with the x-axis.
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Figure 2.1: Variables used to determine System Matrix.

I will denote s = (s, φ). The complete data set is the collection of such hits. Let

D be a set of points in coordinate space, and let P (x, s) d2s d2x be the probability

that an annihilation within d2x of x ∈ D is detected within d2s of the parameters s

in Radon space. The origin of the name of this space will become clear below. We

can associate D with the support of objects within the FOV of a PET camera. Note

that because objects in PET scans have finite extents, D is compact, i.e. it is closed

and bounded [20]. Thus, given λ(x) as the concentration of the radionuclide tracer,

the complete PET data set is then

S(s) d2s =
∫
D
d2x P (x, s) λ(x) d2s (2.1)

P (x, s) is called the System Matrix and is unique to each PET camera system. We

can then interpret PET data as the range of the functional
∫
D d

2x P (x, s).

In order to determine P (x, s), I need to calculate a) the probability that an

annihilation is detected by a pair of detectors and b) the region defined by the pair

of detectors in Radon space. The former can be calculated by measuring the solid
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Figure 2.2: Pulse and Trapezoidal Functions. The axes of the plots are arbitrary.

angles (2D) subtended by the detectors as seen from the annihilation point. The

latter can be calculated by a change of variables from the coordinate variables xy to

the Radon variables sφ.

2.1.2 Response Function

First, I calculate the probability that an annihilation at x is detected by a

pair of detectors. This is called the Response Function. Fig. 2.1 shows two detectors

where the faces are highlighted as opposed to the bulk. I consider only the detector

face. The bulk can be thought of as a stack of detector faces. Let x be the location of

the annihilation. Assuming small angle approximation, i.e. sinφ = φ, the probability

that photon 1 hits the face of detector A is independent of its incidence angle, i.e.

RA−1(x;xA1,xA2) =
1
2π

∫ 2π

0
dφ1 Π(φ1;

φmax1 + φmin1

2
, φmax1 − φmin1 ) (2.2)
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is a Pulse function in φ with a width given by the difference δφ1 = φmax1 − φmin1

and the center by the median φ = φmin1 +φmax1
2 . Note that these angles are implicit

functions of x, xA1, and xA2.

where Π is the pulse function (or the rectangular function) centered at xo with width.

Π is given by

Π(x;xo, w) =


 1 if |x− xo| < w

2

0 otherwise
(2.3)

and is shown in Fig. 2.2. Note that RA−1(x;xA1,xA2) measures the fraction of 2π

that is between xA1 and xA2 as seen from x, i.e. it is the normalized probability of

detector A detecting photon 1.

Recalling that the angles φmin1 and φmax1 are implicit functions of x, xA1, and

xA2, I will use the following analogy to further describe RA−1. At each point x in the

space containing detector A, there is a unit circle whose center is x. Consider a ray

from x. If this ray intersects the face of detector A, i.e. the line segment (xA1,xA2),

then the unnormalized probability that a photon emitted in this direction will be

detected is 1. Otherwise, the unnormalized probability is 0. In Fig. 2.3, this is
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depicted pictorally. In φ space, the probability is a Pulse function between φmin1 and

φmax1 . The width of this Pulse function is the difference φmax1 −φmin1 , while the center

of the function is the median angle φmin1 +φmax1
2 . Thus, the unnormalized probability

that detector A detects photon 1 is given by the area under a Pulse function in the

polar space φ, as given in Eqn. 2.2.

Likewise, the probability that photon 2 is detected by detector B is given

by a similar expression, i.e. it is also a pulse function with the width φmax2 − φmin2

and center φmin2 +φmax2
2 . We can express the correlation between the photon 1 and

photon 2 by the constraint δ(φ2 − (φ1 + π)).

The joint probability that photon 1 hits detector A and photon 2 hits de-

tector B is therefore given by

RA−1,B−2(x;xA1,xA2,xB1,xB2) =
1
2π

∫ 2π

0
dφ1 Π(φ1;

φmax1 + φmin1

2
, φmax1 − φmin1 )

Π(φ1 + π;
φmax2 + φmin2

2
, φmax2 − φmin2 ). (2.4)

I have already applied the δ-function constraint on the second Π function in the

integrand.

Note that Eqn. 2.4 is of the form∫
dx f(x)g(x− y)

∣∣∣∣
y=−π

(2.5)

which is the convolution of two functions evaluated at φ1 = −π. In our case, these

two functions are both Pulse functions. The convolution of two Π functions is the

Trapezoidal Function T (x;xo, t, b)1such that Π(x; c1, w1) ⊗ Π(x; c2, w2) = T (x; c1 −
c2, |w2 − w1|, w2 + w1). T is defined as

T (x;xo, t, b) =




2
b (x− 1) if xo − b

2 < x < xo − t
2

1 if |x− xo| < t
2

−2
b (x− 1) if xo + t

2 < x < xo + b
2

0 otherwise

(2.6)

1The parameters xo, t, b, of T correspond to its center, the extent of its maximum value, and its
support, respectively. The letters t and b are mnemonics for “top” and “bottom.”
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Figure 2.4: Response Function A.

Fig. 2.2 plots a trapezoidal function. Thus RA−1,B−2(x) ∝ T with xo = φavg1 − φavg2 ,

t = |δφ2 − δφ1| and b = δφ2 + δφ1. Therefore, the joint probability that photon 1 is

seen by detector A and photon 2 is seen by detector B is the Trapezoidal function

with the appropriate paramters evaluated at φ = π.

Fig. 2.4 shows an example of a response function for the detector pair

xA ∈ {|x| < 0.5, y = 1.0} and xB ∈ {|x| < 0.5, y = −1.0}. It is normalized such

that the maximum value is 1. The function is a pulse function near the detectors

and is triangular function midway between them. The height of the triangle is twice

the height of the pulse. The function is trapezoidal inside the region defined by the

detector faces and zero everywhere else. The trapezoids are oriented perpendicular

to the line connecting the front faces of the detectors. Fig. 2.5 shows two other

examples of the response function: (B) is for the detector pair xA ∈ {|x + 0.5| <
0.5, y = −1.0} and xB ∈ {x = 1.0, |y − 0.5| < 0.5}, while (C) is for the detector pair

xA ∈ {|x − 0.5| < 0.5, y = −1.0} and xB ∈ {x = 1.0, |y + 0.5| < 0.5}. Note that

the geometry of the detector pair for response function (C) breaks the small angle

approximation near the corner.
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Figure 2.5: Response Functions B and C.

2.1.3 Chord Distribution

I now determine the region in Radon space, i.e. the parameter space sφ,

defined by a pair of detectors. This distribution C is called the Chord Distribution.

Let ΨA(xa) and ΨB(xb) define a pair of detectors such that

Ψi(xi) =


 1 if xi ∈ {xI}, i.e. Detector I

0 otherwise
(2.7)

Thus the distribution of lines of response defined by detectors A and B is

CA,B(xa,xb) = ΨA(xa)ΨB(xb). (2.8)

I need to write this distribution in terms of s and φ. From Fig. 2.1, I can write the

following:

φ =
π

2
+ tan−1(

ya − yb
xa − xb

) (2.9)

s = ya sinφ+ xa cosφ = yb sinφ+ xb cosφ (2.10)

p = −xa sinφ+ ya cosφ (2.11)

q = −xb sinφ+ yb cosφ (2.12)
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Therefore

CA,B(s) =
∫
R

∫
R
dp dq CA,B(s, p, q)

=
∫
R

∫
R
dp dq CA,B(xa,xb)

∣∣∣∣∂(xa,xb)
∂(s, p, q)

∣∣∣∣ . (2.13)

Since 
 xa

ya


 ,

 xb

yb


 =


 cosφ − sinφ

sinφ cosφ




 s

p


 ,

 s

q


 (2.14)

the Jacobian is ∣∣∣∣∂(xa,xb)
∂(s, p, q)

∣∣∣∣ = |p− q| (2.15)

The Convolution Theorem 2 allows us to write any function as integrals over δ-

functions so I consider the case when

DA(xa, ya) = δ(xa − χa) δ(ya − γa)

DB(xb, yb) = δ(xb − χb) δ(yb − γb) (2.16)

This is the limiting case of infinitely small detectors. Thus

CδA,B(s) =
∫
R

∫
R
dp dq |p− q|

δ(s cos θ − p sin θ − χa) δ(s sin θ + p cos θ − γa)

δ(s cos θ − q sin θ − χa) δ(s sin θ + q cos θ − γa) (2.17)

Using the properties of the δ-function

δ(αx) =
δ(x)
|α|

δ(f(x) − a) =
∑
i

δ(x− xi)

| dfdx |
∣∣∣
f(xi)=a

(2.18)

2The Convolution Theorem is also known as the Sifting Property of the Dirac δ-function, i.e.
f(x) =

∫
dy f(y)δ(y − x)
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I get

CδA,B(s) =
∣∣∣∣χa − χb

sinφ

∣∣∣∣ δ(s− χa cosφ− γa sinφ)δ(s− χb cosφ− γb sinφ) (2.19)

From the first δ-function, s = χa cosφ+γa sinφ, so I can rewrite the second δ function

as

δ(s− χb cosφ− γb sinφ) =
δ(m+ cotφ)

| sinφ||χa − χb|
m =

χb − γb
χa − γa

(2.20)

to get

CδA,B(s) =
1

| sinφ|2 δ(s− χa cosφ− γa sinφ) δ(m+ cotφ)

= δ(s− χa cosφ− γa sinφ) δ(φ− arctan(m) +
π

2
) (2.21)

Fig. 2.6 shows the chord distribution for the three detector pairs discussed

in Figs. 2.4 and 2.5. The distribution was calculated by assuming that each point

on each detector is equally probable to be hit. Of course in a real PET system, this

probability is modified by the response function integrated over all the points in the

FOV.

2.1.4 System Matrix and Radon Transform

The System Matrix can therefore be written as

P (x, s;xa1,xa2,xb1,xb2) = RA−1,B−2(x;xa1,xa2,xb1,xb2)∫
χa∈{xA}

∫
χb∈{xB}

d2χa d2χb C
δ
A,B(s) ΨA(χa) ΨB(χb) (2.22)

If I take the limit as {xa} → XA and {xb} → XB, i.e. take the limiting case of

smaller and smaller detectors,

P (x, s) → c δ(s− x cosφ− y sinφ) (2.23)
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Figure 2.6: Examples of Chord Distributions. These are chord distributions of de-
tectors pairs in Figs. 2.4 and 2.5 given that the probability of hitting each point on
both line segments are all equal.

where s is defined by the points XA and XB for some constant c. The limiting case

of the Chord Distribution is given by Eqn. 2.21. On the other hand, the limiting

case of the Response Function can be determined by observing that its integral

perpendicular to the line connecting the detectors is independent of its distance

from either detector. Fig. 2.7 A shows the sum of the pixel values across the columns

of image in Fig. 2.4 (Response Function A). Note that it is a constant. Fig. 2.7 B

shows the sum of the pixel values along the diagonals of the Response Function B

in Fig. 2.5 as the detector pair is taken to the limit xA → {x = 0.0, y = −1.0} and

xB → {x = 1.0, y = 0.0}. The curves are the normalized integrals as the detectors

are shortened in length by 0.2. Thus, the Response Function tends to a constant

value along the line defined by sφ and within the confines of the detector pair.

The functional

Φ[f(x)] =
∫
D
d2x δ(s− ξ · x) f(x) (2.24)
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with ξ = (cosφ, sinφ) is the called the Radon Transform, R. It is thus named

because of the pioneering work of Johann Radon [25] in inverting it. R in 2D maps

the function f on to its line integrals, i.e. it calculates the projections of f . Fig. 2.8

shows the coordinate system used by the Radon Transform. Therefore in the limit

of infinitely small detectors, PET data is the Radon Transform of the radionuclide

concentration in the subject being imaged. All that needs to be done is to invert the

transform in order to determine the concentration map of the radionuclides.

The connection between PET and the Radon Transform is an extension of

the transform’s use in X-ray Computed Tomography (CT). In this imaging modal-

ity, the intensity of a beam of x-ray is measured after traversing the subject being

scanned. Along the source-detector line L, the quantity

I

Io
= exp(−

∫
L
µ(x) ds) (2.25)

is measured. This model also assumes infinitely small detectors. The exponent on

the right hand side is the line integral of the attenuation map. It is clear that the

log of both sides of the equation yields the Radon transform on the right-hand side

with the attenuation map of the object, µ(x), serving as the function f in Eqn. 2.24.

2.2 Radon Transform and Its Inverse

2.2.1 Examples of Radon Transform

Fig. 2.9 shows three sample objects whose Radon transforms are in Fig. 2.10.

The Radon variables s and φ are plotted as rectilinear variables instead of a polar

coordinate pair. The sets on which they are defined are discussed in § 2.2.2. In this

coordinate system, the Radon transform of the δ-function δ(x−xo) is the sine curve

δ(s − xo cosφ − yo sinφ) (Fig. 2.10 A). Note that this is the “x - projection” of the

vector xo onto the axes which are rotated by φ relative to the xy axes. Because

this projection has the locus of a sine curve, PET data are referred to as sinograms.

Fig. 2.10 B is the Radon transform of a disk centered at the origin with r = 0.2. It



27

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

0

0.5

1

Disk, r = 0.2

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

0

0.5

1

Box, w=.6 h=.3

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

0

0.5

1

y−axis

Point, x=.5, y=0.

x−axis

Figure 2.9: Sample Objects.

is independent of the projection angle because the disk is symmetric under rotation.

Fig. 2.10 C is the transform of a box. Rattey and Lindgren [22] noted that considering

s and φ as a polar-coordinate pair leads to the incorrect assertion that Rf(s = 0)

is independent of φ. It is clear from the projection of the box that Rf(s = 0) is in

fact dependent on φ. The PEM camera produces a sinogram of this form if its FOV

is flooded with constant radioactivity.

2.2.2 Properties of Radon Transform

Several properties of the Radon transform are essential to its inversion.

Among them are a) Linearity b) Homogeneity and Symmetry c) and its relation to

the Fourier Transform. I discuss these here but a more extensive treatment of the

properties of the Radon transform appears in [23].

The linearity of the Radon Transform is easily seen by the following. Let f

and g be two functions and c1, c2 be constants. Then

R[c1f + c2g] =
∫
D

[c1f(x) + c2g(x)] δ(s− ξ · x) dx

= c1

∫
D
f(x) δ(s− ξ · x) dx + c2

∫
D
g(x) δ(s− ξ · x) dx
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Figure 2.10: Radon Transforms of Sample Objects.

= c1 Rf + c2 Rg (2.26)

A function f is homogeneous of order (or degree) a if for a given constant t

f(tx) = taf(x) (2.27)

Observe that

Rf(a s, a ξ) =
∫
D
f(x) δ(a s− a ξ · x) dx

= |a−1|
∫
D
f(x) δ(s− ξ · x) dx (2.28)

so that Rf is homogeneous of order −1. As a consequence of this, we have the

symmetry property

Rf(−s,−ξ) = Rf(s, ξ) (2.29)

which means that I can define s and φ such that s ∈ (−∞,∞) and φ ∈ [0, π).

The relation of the Radon Transform with the Fourier Transform is the

basis for the Fourier Inversion Methods used in Reconstruction Tomography. This

relation, first discussed by Bracewell [24], leads to the Central Slice Theorem which

I define below.
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The Fourier transform F and its inverse F−1 are defined as (up to constants)

Ff =
∫
R2
d2x f(x) e−ik·x

F−1F =
∫
R2
d2k F (k) eik·x (2.30)

Note that Eqn. 2.30 can be expressed as

Ff(k) =
∫
R
dt

∫
R2
d2x f(x) e−it δ(t− k · x) (2.31)

In polar coordinates, k = kξ where k =‖ k ‖ and ξ is the unit vector in the direction

of k. Hence, Eqn. 2.31 can be rewritten as

Ff(kξ) =
∫
R
dt

∫
R2
d2x f(x) e−it δ(t− kξ · x)

=
∫
R
d(
t

k
)
∫
R2
d2x f(x) e−it δ(

t

k
− ξ · x)

=
∫
R
ds e−isk

∫
R2
d2x f(x) δ(s− ξ · x) (2.32)

= FsRf (2.33)

where I have substituted s = t
k in the second to the last step. The final step comes

from the observation that the right-hand side of Eqn. 2.32 is the s Fourier transform

of the Radon transform. Thus the 2D Fourier transform of f is the 1D s Fourier

transform of its Radon transform.

The Central Slice Theorem is a direct consequence of Eqn. 2.32. It states

that the Fourier components of the projection of a function in a direction perpen-

dicular to ξ and at a distance s from the origin are equal to the Fourier components

of the function along the direction ξ through the origin in Fourier space. Given ξ

constant, note that the left-hand-side of Eqn. 2.32 are the Fourier components of f

along a line going through the origin in the direction of ξ. Also the right-hand-side

are the Fourier components of the ξ projection of f a distance s away from the origin.

Fig. 2.11 shows the Central Slice Theorem graphically. The contours on the Fourier

transform of the object is an attempt to indicate that the Fourier transform of a

function with compact support has infinite support in Fourier space.
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Figure 2.11: Central Slice Theorem in 2D.

2.2.3 Inversion of Radon Transform

I have shown that in the limit of small detectors, PET data is the Radon

Transform of the radionuclide concentration map. I can thus determine the distribu-

tion of radionuclides in the subject being imaged by the inversion of the transform.

The original 2D inversion of the Radon Transform was done by Johann Radon. He

showed that continuous functions which have compact support D have a unique Rf
determined by its projections along all lines L intersecting D (Eqn. 2.1). While I

have considered 2D cases in our previous discussions, I present here an n-dimensional

inversion of the Radon Transform in anticipation of the following chapter.

I begin with the Fourier inversion formula:

f(x) =
∫
Rn

dk eik·x F (k). (2.34)

Expressing Eqn. 2.34 in spherical coordinates

f(x) =
∫
R
|k|n−1dk

∫
Ω
2

dΩn e
ikξ·x F (kξ) (2.35)
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Note that I use the entire real axis for the integration of k. dΩn is the n-dimensional

solid angle element3 while Ω
2 denotes half the solid angle in n-dimensions. In R2,

Ω
2 is the half plane {φ : φ ∈ [0, π)}. In R3, while it is customary to use the top

hemisphere Ω
2 = {φ, θ : φ ∈ [0, 2π), θ ∈ [0, π2 )}, I will use the lateral hemisphere

Ω
2 = {φ, θ : φ ∈ [0, π), θ ∈ [0, π)}. I substitute the Central Slice Theorem (Eqn. 2.32)

for the last term of the integral to get

f(x) =
∫

Ω
2

dΩn

∫
R
dk eikξ·x |k|n−1 FsRf(k). (2.36)

The inversion diverges depending on whether n is even or odd. When n is

odd, the absolute value sign is unnecessary. Recall that

Fs
[
dn

dsn
h(s)

]
(k) = in kn F [h](k) (2.37)

so that the inner integral in Eqn. 2.36 can be written as

f(x) = i1−n
∫

Ω
2

dΩn F−1
k

[
Fs
[
dn−1

dsn−1
Rf(s)

]
(k)

]
(x · ξ); n odd (2.38)

I have suppressed the Ω dependence for brevity. However, I have explicitly expressed

the integrand as a function of the variable x · ξ which is critical in the completion

of the inversion. The product x · ξ is the dual variable of k in the inverse Fourier

transform. Note that both Fourier transforms are in R.

Define the Backprojection operator B as

Bg(x) =
∫

Ω
2

g(x · ξ,Ω) dΩn (2.39)

where g on the right-hand side is expressed in spherical coordinates and ξ is the

direction specified by φ. Eqn. 2.38 can then written as

f(x) = i1−nBF−1
k FsDn−1

s Rf ; n odd (2.40)

where D is the derivative operator.
3Recall that dΩ2 = dφ while dΩ3 = sin θ dθ dφ.
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When n is even, the absolute value sign remains and the less elegant formula

is

f = i1−nB F−1
k |k|n−1 Fs Rf ; n even (2.41)

Analytic reconstruction algorithms are implementations of this inversion formula.

Because of the close relation of this equation with the Fourier transform, these algo-

rithms are classified as Fourier Methods of Image Reconstruction.

Natterer [26] gives a detailed discussion of this inversion. He unifies the

inversion in even and odd dimensions by using the Riesz Potential I defined as

F [Iαf ](k) = |k|−α F [f ](k). (2.42)

He notes that the inner integral in Eqn. 2.36 can be expressed as a Riesz Potential.

His inversion leads to the explicit use of the Hilbert Transform H which appears in

the inversion formula only when the dimension n is even. This has consequences for

the inversion of the Radon transform in the following sense. The Hilbert Transform

H is defined as

Hf(s) =
1
π

∫
R
dt

f(t)
s− t

. (2.43)

Observe that this is the convolution of the function f(s) with the function s−1. This

convolution leads to the non-locality of the inversion in that the determination of f

at a point x requires values of Rf that does not involve x. This means that in 2D

reconstruction where H appears, one needs the projections through all the points in

the support of f . However, since H does not appear in the 3D inversion, one does not

need all the projections of f . Indeed, one can reconstruct a 3D object by stacking

reconstructed 2D planes which are independent of each other.

2.2.4 Backprojection and Filtering

Natterer [26] noted that R and B form a dual pair in the sense that while

R integrates over all points in a hyperplane of Rn (lines in 2D), B integrates over all

hyperplanes through a point. We now limit our discussion to R2 again. Fig 2.12(B)
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Figure 2.12: rφ as Rectilinear Variables. The Gaussian distribution centered at the
origin in xy (Left), its color indicating its height on the z axis, appears as a tunnel-like
structure that is independent of φ in rφ space (Right). A point maps to a sinusoid
as shown in the plots. The ordinate in the right plot is the linear variable, r, while
the abscissa is the polar-angular variable φ.

plots the Gaussian distribution in Fig 2.12(A) using rφ treated as rectilinear variables

instead of a polar-coordinate pair. Note that for a fixed (xo, yo), r = x · ξ = xo cosφ+

yo sinφ follows a sine curve. Consider the point (-0.2,0.2) as indicated in Fig 2.12

(A) and the corresponding curve as drawn in Fig 2.12 (B). Note that each point in

rφ defines a line in xy (§2.1.3). This observation is in fact the basis for the Hough

Transform developed by Hough in detecting straight lines in images [27]. Thus,

Eqn. 2.39 integrates over all the lines through (xo, yo) as φ takes on values from 0 to

π.

The inversion in R2 reads:

f = B F−1
k |k| Fs Rf (2.44)

The quantity that is backprojected is the Radon transform after its Fourier transform

is multiplied by the function |k|. This is in fact filtering of the projection data with

the Ramp Filter. The reason for this filtering becomes clear when we backproject

the Radon transform alone. Fig. 2.13 is the backprojection of 1, 2, 4 and all of the
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Figure 2.13: Backprojection of 1, 2, 4, and ∞ projections.
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projections of the sinogram in Fig. 2.10(B). Note that instead of the disk, Backpro-

jection alone gives a blurred image of the object. In R2 this blurring is the result of

the convolution of the object with 1
r [23]. Note that F 1

r = |k|. Since a convolution

in coordinate space is a multiplication in Fourier space, the filtering of the sinogram

by |k| removes this blurring from the image.

In principle, all the essence of reconstruction tomography is contained in

the discussions of the preceding section. However, we have made many assumptions

in deriving the Radon transform model and its inversion. The main assumption is

that our detectors are infinitely small. This gives us the complete Radon transform of

the object in the FOV. Another assumption is that photons are not scattered in the

object. In addition, photons are assumed not to penetrate into nor to scatter in the

crystals. In reality, crystals have finite size. Photons scatter in and are attenuated by

the object being scanned, and penetrate and scatter in the crystals. We will address

these issues in the succeeding sections. In particular, we will address the case where

the assumption of infinitely small detectors fails.

2.3 Iterative Reconstruction Methods

Another class of reconstruction techniques is the Iterative Reconstruction

method. This method attempts to exploit the statistical nature of the data ac-

quisition process in PET. This is accomplished by assuming a model for the data

acquisition process, subjecting an initial guess at the radionuclide distribution to this

model, comparing the resulting expected data with the measured data, and updating

the guess until the expected data compares well with the measured data.

2.3.1 Discretization of the Problem

The issue of non-vanishing detector dimensions is at the heart of the statis-

tical methods of reconstruction. Because there are only a finite number of detector

pairs in a camera, as opposed to infinite if the detectors were indeed infinitely small,
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PET cameras can only acquire a finite number of measurements. In fact, the param-

eters of the sinogram S(s) in Eqn. 2.1, instead of being continuous variables, take on

only a finite number of values sj and φk where 0 < j < Ns − 1 and 0 < k < Nφ − 1

such that S(s) → S(si, φk) = Sjk. Alternatively we can specify one index i such

that S = Si where 0 < i < NsNφ − 1. Thus, the system matrix P in Eqn. 2.1 is a

continuous to discrete functional

Si =
∫
D
d2x Pi(x) λ(x) (2.45)

In order to make the problem more tractable, the object is parametrized

using basis functions as

λ(x) =
Np−1∑
j=0

λj bj(x) (2.46)

where Np is the number of basis functions used. Eqn. 2.1 then becomes

Si =
∫
D
d2x Pi(x)

Np−1∑
j=0

λj bj(x)

=
Np−1∑
j=0

λj

∫
D
d2x Pi(x) bj(x)

=
Np−1∑
j=0

λj Pij (2.47)

The last equation can be written as the matrix equation S = Pλ. The basis functions

need to be chosen so that the object is well represented and the values Pij are

easy to compute. Although by no means the only basis function used in image

reconstruction, the most common choice of basis function is the Pixel Basis. It uses

the Pulse Function Π(x;xo,w) defined in Eqn. 2.3. In this case, Np is the number

of pixels in the image and Pij is interpreted as the probability that an annihilation

event that occurred in pixel j is detected in the sinogram index i.

Thus the inverse of the system matrix P gives the solution to the recon-

struction problem. Unfortunately, there are issues that make the inversion of P
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difficult at best. Firstly, the dimensions involved in PET reconstruction are very

large. For typical 2D images of 1,024×1,024 = 1,048,576 pixels, the number of bins

can approach the same order of magnitude and so we have the problem of inverting

a 1Mx1M matrix. This problem becomes prohibitively large in 3D imaging, where

not only does the number of voxels4 increase by the cube, but the dimensionality of

the projection space increases by the fourth power. Secondly, P is ill conditioned,

i.e. small changes in λ may result in large changes in S. The condition number of a

matrix is defined as the ratio of its largest and the smallest singular values. Thirdly,

the P is not square and thus may have a null space. This means that there maybe

objects in the FOV that project to the zero vector. Fourthly, because of the statis-

tical nature of the data acquisition process, the data in the sinogram S is finite and

thus has noise. Each sinogram bin is an independent random variable with counting

statistics, i.e. Poisson statistics, and thus the data is inconsistent.

2.3.2 Objective Functions and Statistical Models

In essence, Iterative Reconstruction is finding an iterative solution to Eqn. 2.47.

This is done in the absence of an algebraic solution to the problem (e.g. Minimum

Norm Least Squares [28]) where the solution is obtained in one step. An iterative

solution maybe expressed as the solution that minimizes an objective function.

One such objective function is the Maximum Likelihood [29]. The likelihood

L may be defined as the probability of realizing the data d given a model with a set

of parameters Φ [30], i.e p(d|Φ) = L(Φ;d).

Another familiar objective function is the χ2 which we define as

χ2(λ) =
∑
i

(
∑
j Pij λj − Si)2

σ2
Si

(2.48)

where Si are the measured sinograms and σsi are the corresponding uncertainties.

Note that a sum over the pixel index j is a projection operation while a sum over
4Voxels, or volume elements, are 3D analogs of pixels
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the sinogram index i is a backprojection operation. It is evident then that the

backprojection operation is the matrix transpose of the projection operation, i.e.

B = P T . In fact, redefining S and P such that

Si = Si/σsi

Pi• = Pi•/σsi (2.49)

Eqn. 2.48 written in matrix notation is

χ2(λ) = λT PTP λ− 2ST P λ+ STS (2.50)

This formulation may be interpreted as a Maximum Likelihood solution

to the reconstruction problem with the assumption that the measured data S has a

Gaussian distribution centered at S with uncertainties σi =
√
Si. This is appropriate

if the data are precorrected for randoms and scatter, and attenuation and detector

efficiency. Fessler [31] observed that the common procedure of subtracting accidental

coincidence events from the sinogram [32] shifts the statistics of PET data such that a

Gaussian model is the more appropriate distribution rather than Poisson. While it is

true that the Poisson distribution maybe approximated by the Gaussian distribution

for large means as predicted by the Central Limit Theorem [33], he shows that even

for small true rates and 10% randoms, a Gaussian model is more appropriate.

2.3.3 Pros and Cons of Iterative Reconstruction

There are benefits of posing the reconstruction problem as a statistical

problem. Among them are that constraints on the problem can be incorporated

into the reconstruction in a consistent manner. An example of these constraints

is the physical constraint of positivity. Since the image represents the radiotracer

density, all pixels in the reconstructed image must have a non-negative value. A

priori information may also be incorporated into the reconstruction procedure as

well. This information may be from other imaging modalities such as MRI and CT.



39

λj

l
ij

a
ij

λ j

is = Σ
j

l
ij λ j

is = Σ
j

a
ij λ j

(A) (B)

Figure 2.14: Models used to calculate System Matrix elements. (A) is the line length
model and (B) is the strip area model.

An example of a priori information used in iterative reconstruction today is the

object boundary which can be determined by subjecting the object to a CT scan

before the PET scan. Statistical models may also be used in the reconstruction such

that the statistical significance of individual LOR’s are appropriately used. Filtered

Backprojection treats all the LOR’s equally.

There are, however, disadvantages to using iterative techniques. An accu-

rate model of the data acquisition process is needed. The comparison between the

expected and measured data is only as good as how well the expected data can be

modeled. There are two common approximate methods for calculating the elements

of the matrix P, both of which are detailed in RECLBL [34]. The first one calculates

the length of the chord that lies within a pixel boundary. The contribution of this

pixel to the sinogram bin is the length multiplied by the pixel value. The second

is to calculate the area of intersection between the pixel and the strip defined by

the boundaries of the sinogram bin. Fig. 2.14 shows these two methods. Note that
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these methods do not include the solid angle factor in the calculation of the system

matrix elements. More recently, Huesman et al. [35], in attempting fully 3D list

mode iterative reconstruction with the PEM camera, uses the line length method

but draws several lines through the voxel (the 3D equivalent of a pixel) and includes

the solid angle factor. List mode reconstruction performs image reconstruction on

an event-by-event basis instead of the histogrammed sinogram data.

Another disadvantage of using iterative reconstruction techniques is in the

software implementation. It is more complex than the filtered backprojection. In

addition, the computation time involved can be an order of magnitude longer than

filtered backprojection. There are, however, efforts to reduce the computation time

with more efficient algorithms. It is unlikely that computing power alone will solve

all of the computational difficulties of image reconstruction [36].

Finally, the nonlinearity of the problem makes statistical characterization

of images in terms of noise difficult [37]. Often approximations are used to make the

problem tractable, as for example, the approximate expressions for image bias and

covariance in generalized-EM algorithms derived by Barret et al. [38] and Wang et

al. [39]. These approximations are made out to be functions of the iteration number.
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Chapter 3

The Camera

The Positron Emission Mammography (PEM) camera is an optimization of

conventional PET cameras. It is intended to be used to image human breasts as an

application of nuclear medicine techniques in breast cancer detection and manage-

ment. In this chapter, I describe the geometry and the components of the camera,

the data acquisition system, the data flow and initial processing before they are

stored, the construction of the modules that make up the camera, and finally the

construction of the camera itself. I also describe the process for measuring the DOI

information.

3.1 Detector Module

Central to the success of the PEM camera is a PET detector module that

addresses the problem of crystal penetration. Crystal penetration leads to degrada-

tion of camera resolution away from the center of circular tomographs, a problem

called Radial Elongation. The severity of the problem increases with increasing angle

of incidence between the 511 keV photons and the crystal detectors. Conventional

PET cameras are typically circular with a FOV covering half its radius, i.e. the

maximum angle of incidence between a 511 keV photon and a crystal is π
6 . The
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rectangular geometry of the camera together with extension of the FOV to include

nearly the entire area enclosed by the detector modules allow angles of incidence

far greater than those encountered in conventional PET machines, exacerbating the

problem of Radial Elongation.

3.1.1 Camera Geometry

The PEM camera is rectangular in shape for a several reasons. One of the

motivations for developing the PEM camera is to achieve greater sensitivity over full-

body PET machines currently in use. This is accomplished by bringing the modules

in as close as possible to the breast. Because the modules are parallelpipeds of fixed

size, packing them into any shape will result in some fraction of the detector volume

not covered by detector material. These gaps wil result in regions in the FOV

with either low detection efficiency or unsampled. A rectangular packing scheme

minimizes these gaps in the detector volume. The individual modules are ganged

together into four independent banks. The corners of the rectangle remain a problem

but they can be remedied by overlapping adjacent banks. The minimum overlap

between banks is designed to be be two crystal widths (6 mm).

Another reason for the rectangular shape is so that the camera is able to

accomodate breasts of varying sizes. The long edges of the camera may be moved.

This design also has the benefit of allowing the soft compression of the breast during

the scan to prevent motion which would lead to artifacts in the reconstructed image.

In the case of PET, these artifacts are manifested by further blurring and loss of

resolution [40].

Incidentally, bringing the modules as close to the subject as possible has

the added benefit of minimizing the effect of acollinearity. As previously discussed,

the two 511 keV photons are acollinear because the lab frame is not the rest frame

of the positron-electron system. The acollinearity results in an additional blurring

of the image that is proportional to the effective diameter of the camera and which
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can be modeled as a Gaussian blur with a FWHM1 of 0.028mm/(cm diameter) [41].

The closer the modules are to the breast, the smaller an effect acollinearity becomes.

Thus, while the geometry of the camera worsens radial elongation, it non-

theless needs to be rectangular. Of course if the depth of interaction were measured,

the geometry of the camera is immaterial.

3.1.2 Previous attempts at correcting Radial Elongation

In the past, there have been generally two ways of dealing with crystal

penetration and radial elongation. One strategy is to determine the blurring function

throughout the field of view and deconvolve it out of the image. Huesman et al. [42]

performs this type of deconvolution on the data before it is reconstructed. They

accomplish this deconvolution by modeling the data acquisition in PET as a linear

system

〈s〉 = Pλ (3.1)

where s is the vector representation of the measured data, the 〈〉 indicating its ex-

pectation, P is a matrix representing the data acquisition process and λ as the

radionuclide concentration to be determined. The problem of image reconstruction

is discussed in Chapter 2. In particular, s is called the sinogram while P is called

the system matrix which is defined in §2.1.1. The method discussed has the flavor of

Iterative Reconstruction (§2.3) in the begining. However, the deconvolution of the

radial blurring is performed on the data before it is used to reconstruct the object.

Once the data is corrected for the blurring, the object is reconstructed using filtered

backprojection [43] with a ramp filter.

The blurring is modeled as a matrix operator G that is applied to the data

as

s∗ = G〈s〉 (3.2)
1FWHM is the point at which a Gaussian distribution is half its maximum value. It corresponts

fo 2.35σ.
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where s∗ is taken to be the sinogram that is measured by the camera. In order to get

a reconstructed image that does not have radial blurring, the inverse of G is applied

to the measured sinogram before the reconstruction is performed. G is calculated by

determining all the possible chords that a crystal-face to crystal-face chord maps to

when an event at the crystal face is allowed to penetrate into the bulk of the crystal.

The penetration is modeled according to an exponential distribution.

The results indicate that this procedure amplifies the noise in the recon-

structed image with only a modest improvement in radial resolution. In addition,

this result was obtained using the infinite count limit, i.e. the number of events in

the data set is large enough that statistical fluctuation is a small effect. Huesman

predicted that in finite data sets, the statistical correlations in the correction matrix

will cause the pixels of the image to have a high degree of correlated noise.

The other strategy is to deal with the problem in hardware. However,

the most obvious ways of treating the problem of crystal penetration all lead to a

reduction in the sensitivity of the tomograph. Decreasing the crystal length increases

the likelihood that the crystal of interaction is the first crystal penetrated by the

photon; but this means that the stopping power is reduced and thus sensitivity is

compromised. The diameter of the tomograph may be increased so that the incidence

angle of the photon is minimized, but this means that the solid angle covered by the

detector, and thus the sensitivity, is decreased. Finally an absorbing metal may be

placed between crystals to prevent photons from penetrating into adjacent crystals.

Keller et al. [44] studied the use of tungten septa of a few millimeters. Their Monte

Carlo simulations indicated that an improvement of 15% in resolution is obtainable

at a loss of 200% in sensitivity.

A number of alternative module designs that measure DOI are based on

the phoswhich design, i.e. stacking short crystals that have different properties into

a single “crystal.” DOI is measured by determining in which short crystal the inter-

action occured. One design was conceived and built by Carrier, et al. [45]. Their

design used a Bi4Ge3O12(BGO)-Gd2SiO5:Ce(GSO) phoswhich, with crystals of the
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same length staggered (and rotated) to minimize degenerate chords. This configu-

ration of crystals, accomodates the four (4) sample per detector width requirement

for the Nyquist condition [46] to be satisfied. In fact, Derenzo [47] observed that

if the modules of a stationary PET ring are rotated so that the long axes of the

crystals do not intersect at the center of the tomograph, DOI information can be

used to provide continuous linear sampling. The module used avalanche photodiodes

for readout. They observed a 15% light loss in the BGO-GSO boundary. The recon-

structed images indicated that although the resolution was more uniform throughout

the entire FOV, the resolution at the center of the tomograph degraded.

A more recent example of the phoswhich design is the three-crystal module

built by Seidel et al. [48]. The module is composed of three layers of crystal scintil-

lators, each 4 cm in length. The crystals are Lu2SiO5:Ce(LSO) [49], GSO, BGO. In

this case, provided that there are no degenerate chords, there is a potential 9-fold

increase in the sampling rate of the tomograph. Coupled to the module is a PMT

that integrates the light output of the crystal of interaction. Because the decay rates

of the crystals are 40 ns, 60 ns, and 300 ns respectively, the ratio of the total inte-

grated signal to the signal integrated over a short window close to the trigger will

be greatest for an interaction that occurs in the LSO and least for an interaction

that occurs in the BGO. This method is called Delayed Charge Integration. This

phoswhich module has an average successful identification fraction of approximately

83%.

Other modules include one which used the temperature dependence of the

light output of scintillation crystals [13], one which had a position sensitive photo-

diode along the length of the crystal [47], and one which had a strip of absorbing

black band around a portion of the crystal to differentiate the front versus the back

of the crystal [21]. The black strip in the last example was placed in a location such

that the probability that the photon will interact in the front section of the crystal

is equal to the probability that it will interact in the back section of the crystal.

This addresses the nonuniform count rate between the two segments which, if not
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NaI(Tl) BGO LSO
Density ρ(g/cm3) 3.67 7.13 7.4
Effective atomic no. 51 75 66
Radiation Length λ(cm) 2.56 1.12 1.14
Index of refraction n 1.85 2.15 1.82
Relative Emission Intensity 100 15 77
Peak Wavelength λP (nm) 410 480 420
Decay Constant τ(ns) 230 300 40

Table 3.1: Scintillator Properties of NaI, BGO, and LSO.

considered, leads to the increase in the noise level of the image [50].

3.1.3 Lutetium Orthosilicate

In conventional PET modules, scintillation light produced by an interacting

511 keV photon is collected by one photodetector, most often a photomultiplier

tube. However, the PEM modules measure DOI by comparing the scintillation light

collected from one end of a crystal with that from the other end. Because the

scintillation light is shared between two photodectors, the amount of light impinging

on each detector is lower than if there were only one photodector attached to one

end. It is therefore critical that the scintillator used for the PEM modules has high

light yield.

The scintillator of choise is LSO. First classified as a scintillator by Melcher

et al [49], LSO is a monoclinic C crystal with unit cell parameters a = 14.254Å, b =

10.241Å, c = 6.641Å, γ = 122.20o [51]. The crystals are grown as Lu2(1−x)Ce2x(SiO4)O

where the Ce atoms serve as activiation sites for the scintillation process. Undoped

LSO does not scintillate. The properties of LSO are summarized in Table 3.1 together

with the properties of BGO and NaI(Tl) for comparison.

LSO has scintillation and mechanical properties that make it desirable for

our application. Among them are its high density and short radiation length, both of
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Figure 3.1: The PEM Module. The main componenets of the module are the LSO
crystals, the front end custom IC, the photodiode array, the PMT and the flex circuit.

which are comparable to BGO. Its high effective Z ensures a high photoelectric cross

section which is proportional to Z4<n<5 [52]. Its index of refraction is similar to that

of glass so that reflection is minimized between the crystal-PMT interface. Its peak

emission wavelength is 420 nm, which is a good match for bialkali photomutliplier

tubes that we use, and it is transparent to its own scintillation light. It has an order

of magnitude faster decay constant than BGO, and in fact has an even faster decay

component of 12 ns which has a relative fraction of 35%. It is rugged, and unlike

NaI, it is not hygroscopic.

The crystals used for the PEM camera have the dimensions 3×3×30 mm3.

With 42 modules, each an 8×8 array of crystals, the PEM camera requires 0.7258 l

of LSO. We acquired the LSO crystals from CTI-PET Systems, located in Knoxville,

TN, USA.
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3.1.4 Photodetectors

Fig. 3.1 shows a completed PEM module. We use two devices to collect the

signal from the LSO. The signal from the PMT serves as the trigger and initiates the

readout in the data acquisition system. The signal from the pixelized photodiode

(PD) array identifies the crystal of interaction. The ratio of the signal from the PD

and the sum of the signals from the PD and the PMT determines the depth at which

the 511 keV photon interacted within the crystal.

The PMT used for the camera is a Hamamatsu R2497 PMT. It is a 10-stage

linear PMT that operates at 1.5kV with a typical gain of 2.5×106 and maximum dark

current of 250 nA. Its spectral response ranges from 300 nm to 600 nm with a peak

at 420 nm. It uses a bialkali metarial for the photocathode and its window is made of

borosilicate glass. Its typical response time is approximately 2.4 ns. Its dimensions

are 2.5×2.5 cm2 by 10 cm.

The PD is a PIN type device consisting of an 8×8 array of photosensitive

elements. The device is backside illuminated, i.e. the pixels have a common photo-

sensitive n-layer and a pixellated p-layer. Each pixel is 3×3 mm2. The device has

a quantum efficiency of ≥70% in the 380-600 nm range. Because of the low number

of scintillation photons from the LSO crystal, and the fact that these photons are

shared between the PD and the PMT, it is important for the PD to have as little

noise as possible. Typical signals in the PD are expected to be between 1000 and

3000 e−. The PD is operated with 50 V at room temperature ( 25oC) with dark

current less than 200 pA. Each pixel has a terminal capacitance less than 5.0 pF and

a series resistance less than 50 Ω. The signals from the PD is processed by a custom

IC and are delivered to the downstream electronics by a Kapton flex circuit.
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3.2 Data Acquisition System

The data acquisition system for the PEM camera can be divided into three

major components: a) the front-end electronics b) the initial data processing boards

and c) the coincidence processing. The front-end electronics is composed primarily

of the PET64, a custom IC that processes the signal from the PD. The initial data

processing boards are circuit boards modeled after the electronics of the CTI-PET

systems which are used for the High Resolution Research Tomograph (HRRT). The

boards were originally designed to take in four PMT signals as input and perform

Anger Logic type calculations to determine the crystal of interaction. They are

therefore modified to accomodate the signals from the PD and as well as to generate

control signals for the PD. The coincidence processing boards are taken directly from

CTI as “off the shelf” components.

3.2.1 Front End Electronics

The central piece in the front end electronics is the PET64, a custom IC

designed and built by the Lawrence Berkeley National Laboratory Engineering Divi-

sion. The PET64 has two main components: a 64 channel charge sensitive amplifier

and the circuitry that determines which of the 64 channels is associated with the

crystal that is hit by the 511 keV photon, the Winner Take All (WTA). Controls for

the charge sensitive amplifier and the output of the WTA are brought in from and

out to the Analog Subsection respectively by a flex circuit board made of Kapton.

The custom IC has 64 channels with an area of about 4.0×5.0 mm2. The

rise time, fall time and bias currents of each channel are all adjustable parameters

via an external current source. The gain of the amplifier can be varied by a factor

of 4 in 64 steps by an external control determining the feedback capacitance of the

amplifier. The PEM modules are anticipated to operate the amplifiers at the highest

gain and rise and fall times of approximately 1µs and 3µs respectively. Fig. 3.2 shows

a schematic of one channel of the amplifier.
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Figure 3.2: Schematic of one channel of charge sensitive amplifier

The small signal in the PD of 1000-3000 e− coupled with a typical noise

of 470 e− FWHM together with Compton scatter complicates the event topology

so that a simple threshold scheme will often give indeterminate results, either with

zero or greater than one pixel above threshold. In order to determine the crystal of

interaction correctly and rapidly (< 100 ns), the WTA circuit [53] is used for the

PEM front end electronics. The WTA is composed of 64 amplifiers, each with only

two transistors, and all supplied by a common limited current source such that only

one of the amplifiers can be turned on. The chosen channel, the one with the highest

input signal, is encoded and is used to select a multiplexer input which is the output

of the amplifier circuit.

3.2.2 Data Flow Control

The signals from the PMT and the PD are acquired by the Analog Subsec-

tion Board (ASB), shown in schematic in Fig. 3.3. A PMT signal that is above the
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prescribed threshold in the Analog ASIC serves as the event trigger. The trigger is

sent to a programmable logic array that performs the timing and initial data pro-

cessing. The system clock of the Analog Subsection has a period of 32 ns, so in order

to get the 2 ns timing resolution required by the coincidence board downstream,

the trigger is sent through a delay line that resolves the time stamp into sixteen 2

ns divisions. The trigger and the verniered time constitute the time stamp of the

event. The signals to sample and hold the front end amplifier outputs are then sent

to initiate the output sequence of the PD. Approximately 256 ns after the trigger,

the Altera FPGA strobes the flash ADC and captures the PMT digitized signal.

Approximately 1 µs after the trigger, the Altera FPGA strobes the other ADC and

captures the PD digitized signal of the winning channel in the photodiode array. The

address of the winning channel is also latched by the Altera FPGA at this time.

Once the PD and PMT signals have been digitized and latched, crystal-

dependent corrections are applied to them so that they can be added and their

ratios taken. The correction is done through lookup tables stored in RAM chips on

board. The RAM chips take the PD address and PD and PMT signals as inputs.

The correction scales the input values with the appropriate multiplier.

The corrected PMT and PD values are then used to determine whether or

not to accept the event, and if so, to calcualte the DOI. The signals are added to

get the total energy of the event. This energy is used to qualify the event whether

it is consistent with a 511 keV event or not. The threshold for the energy is set to

approximately 350 keV. The qualification is performed in another lookup table stored

in another RAM. The inputs of the RAM are the corrected PMT and PD values.

They serve as addresses of the RAM which contains essentially a flag, determining

whether the event is good. If the event is in the acceptance window, the DOI is

calculated, again using a lookup table. The same corrected PD and PMT signals

are used as addresses in the RAM where the ratios PD
PD+PMT have been previously

stored.

The entire event word, comprised of the time stamp, the PD address, the
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Figure 3.4: Electronics organization for the PEM data acquisition system.

energy qualification bit and DOI bits are then clocked out of the Altera FPGA

board. The entire event processing takes approximately 1µs, during which the entire

detector block is paralyzed. Each detector module is therefore able to handle a 1

MHz single-event rate.

Fig. 3.4 shows the data flow after the event is pushed out of the ASB. Each

ASB receives data from three modules in parallel and delivers the information to the

Detector Head Interface (DHI). The DHI serves as a data funnel for up to five ASB.

The DHI can receive up to fifteen singles data in parallel but puts out only four. Each

detector bank has its own DHI so there are a total of four DHIs for the PEM camera.

The events are then transfered to the coincidence processor which determines if there

are any hits from two unique DHIs within a 2 ns window. These events are tagged as
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coincidences and are written in list-mode to disk. The coincidence processor is able

to handle coincidence rates of up to 4 MHz. The events may also be histogrammed

into projection data immediately after being tagged as coincidences, but that will

require rebinning in order to properly treat the DOI information. The possibility

of using of CTI’s rebinner board for the purposes of the PEM camera was being

deliberated at the time of the writing of this dissertation.

3.3 Construction and Calibration

The surface of the LSO needs to be treated so that the number of scitillation

photons detected at each of the photodetectors will have a depth dependence2. The

treatment of the LSO crystals is described in detail by Huber et al. [54]. In order to

reduce processing and handling of the crystals, they are chemically etched instead

of mechanically polished. The crystals are etched in a pyrophosphoric acid bath at

200oC for approximately 5 min. The crystals are then placed in a jig so that strips

of reflector material can be placed on each of the four long sides. The entire crystal

bulk is placed in an evacuated glass bell where the PD is glued on one end and a light

guide-PMT structure on the other. The gluing is done in vacuum in order to minimize

the formation of bubbles in the glue coupling the photodetectors to the LSO. Bubbles

in the glue can adversely affect the light collection of the photodetectors. The front-

end electronics are wire-bonded to the PD array and the entire module is placed

in an parallelpiped aluminum can together with two other modules. The camera is

then composed of these cans stacked vertically on their sides, four on each of the

long banks of the camera and three on the short banks.

Initial measurements of the depth dependence of the signal were performed

with a set-up described by Moses et al. [55] and shown in Fig. 3.5. However, when

the camera is constructed, it will be impossible to access each individual crystal in
2Depth dependence is defined as the ratio of the signal observed when the crystal is excited at

the end closest to and furthest from the detector.
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Figure 3.5: Setup for DOI Measurement (After Moses).

each module. In calibrating the modules there are two parameters that need to be

determined: the gain ratio between the photodetectors and the depth dependence

factor. The gain ratio is essential so that the signals from the PD and the PMT can

be summed. Huber et al. [56] describes two methods of calibrating the detector in

situ by shining 511 keV photon from the end of the crystals instead of the side. The

first method uses the fact that, because of the exponential nature of the interaction

length, the most likely interaction point is that which is closest to the PD (recall that

the PD end is closest to the breast). The signal distribution of both photodetectors

will then have peaks at the energy bins associated with events in which the interaction

point is at the PD end. The ratio of these energy bins should determine the depth

dependence of the signal. The second method uses the fact that the total energy

of the events is independent of the depth of interaction if the gain between the

photodetectors were correct. Simulations indicate that both gain ratios and depth

dependence can be reasonably determined such that the energy and DOI resolution

are only minimally degraded.
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Chapter 4

Reconstruction in 2D

In order to study the sampling issues without the complications of 3D image

reconstruction, I begin my investigation of reconstruction algorithms for the PEM

camera by limiting the problem to 2D. I do this with the intention of extending

successful methods to a 3D reconstruction of objects within the camera. I use Monte

Carlo simulation to generate annihilation events from which I build the sinogram

data that I reconstruct.

4.1 Simulation

In order to study the algorithms for image reconstruction we are developing,

we need to reconstruct images using them. It would be ideal if we have real data from

which to reconstruct objects. However, since detector development and algorithm

development are simultaneously occurring, it is necessary to generate Monte Carlo

data with which we can form images.

4.1.1 Phantom Simulation

I begin by assuming a phantom in the FOV representing a continuous dis-

tribution of radiotracers. In this thesis, phantoms will generally be classified as point
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sources or extended phantoms. The Point Spread Functions (PSF), the reconstructed

image of a point source, give a measure of the expected resolution of the camera and

the reconstruction algorithm. I measure the image resolution by a Region of Interest

(ROI) study. In the study concentric regions (usually circles or spheres) are drawn

around an area in the FOV within which the total activity is calculated as a function

of distance from the center of the reconstructed point source.

The PSF can also reveal gross non-local artifacts that can indicate problems

with the reconstruction algorithm. Artifact formation can be seen as irregularities in

the reconstructed point-source image. Non-local artifacts are usually streak artifacts

that radiate out from the point source. As image reconstruction depends on small

correlations between projections, mismatches in coordinate system can also appear

in point source reconstructions.

Extended phantom reconstruction provides a measure of noise and over-

all image quality. Noise measurements are done with a similar ROI study. The

mean value of a set of pixels is compared to their covariance and the result can be

interpreted as the signal-to-noise ratio that maybe used to evaluate the image as

reconstruction parameters are varied. Streak artifacts can also be exhibited in ex-

tended phantom images. Objects that appear in reconstructed extended phantoms

but were not included in the simulation are indications of possible reconstruction

errors or inappropriate reconstruction parameters.

A location in the FOV is randomly chosen according to the given phantom

distribution. This is used as the location of the particular radiotracer currently being

generated. As mentioned in §1.2, the ejected e+, losing energy primarily through

collisions [57], actually traverses a finite distance before annihilating with an e−.

I did not include this positron range in my simulation because 18F , which has a

β-decay end-point energy of 0.6350 MeV [58], has a positron range of λe+ = 0.254

mm [59]. The resolution of the camera will be dominated by the crystal size of 3.0

mm. As I shall show, the reconstructed PSF without positron range is of the order

of 2.0 mm. Thus, a 0.254 mm blurring from the positron range will not contribute
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Figure 4.1: Example of generation of limited polar angle, θ.

greatly when added in quadrature.

A random direction is then determined. The distribution of directions is

taken to be flat in the solid angle sin θ dθ dφ for a specified range of the polar

angle. This restriction in the polar angle is taken into account when determining

acceptances and sensitivities which are defined as the fraction of 511 keV photons

detected by the camera and the fraction that survives event selection respectively.

Fig. 4.1 shows an example of the distribution of polar angles if the limits are defined

as θ ∈ [.25, π− .25). The distribution for φ is uniform. The acollinearity with a 0.5o

FWHM between the annihilation photons can be toggled in the simulation.

4.1.2 Photon Tracking

The simulation allows for phantoms with non-zero attenuation, so I will

discuss how I track the photons through the the FOV assuming there is an attenu-

ating medium within it. While the results that I present in this dissertation do not

contain scatter in the FOV, I nonetheless discuss scattering in the FOV for three

reasons: a) I model scatter in the crystals b) concurrent work in list-mode iterative
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reconstruction for the PEM detector models scatter in the FOV c) future work which

should include quantization with the PEM camera, will necessitate the modeling of

scatter in the FOV. Scattering in the crystals of the detector modules follow the same

procedures as scattering in the FOV, differing only by the attenuation constant and

photofraction (LSO vs. scatter medium in the FOV).

I track both 511 keV photons through the phantom, allowing them to in-

teract via either Compton scattering or photoelectric effect. I calculate the energy-

dependent cross sections of Compton scattering and photoelectric effect by using the

equation

σCS,PE(E)[cm2] =
NA10−24

w

∑
i

niσ
CS,PE
i (E) (4.1)

where NA is Avogadro’s number, ni is the number of the ith atom present in the

molecule and w is the molecular weight. For water, nH = 2, nO = 1 and wH2O = 18

g. I calculate the photofraction by taking the ratio PE = σPE(E)
σ(E) , and the linear

attenuation length by using µ(E) = ρσ(E), where ρ is the density of the material.

The distance covered by the photon before interacting is drawn from an exponen-

tially decaying distribution using µ as the decay length. I use the photofraction to

determine the interaction type.

If the interaction is a Compton scatter, I perform the following procedure.

I rotate the photon direction towards ẑ so that the scattering angle can be easily

determined. I draw the azimuthal scattering angle from the flat distribution [0, 2π)

, and the polar scattering angle according to the Klein-Nishina [60] formula

dσ

dΩ
= Zr20

(
1

1 + %(1 − cos θ)

)2
(

1 + cos2 θ
2

)(
1 +

%2(1 − cos θ)2

(1 + cos2 θ)[1 + %(1 − cos θ)]

)

(4.2)

with % = E
m0c2

. The energy of the scattered photon is given by

E′ =
E

1 + %(1 − cos θ)
(4.3)

according to the conservation of energy and momentum. I then rotate the scattering

angles back to the original direction of propagation. I do not track the recoiled
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Figure 4.2: Histogram of generated scattering angle as a function of energy. The left
plot is theoretical while the right plot is generated by the simulation.

electron which is assumed to deposit all its energy at the point of interaction in the

phantom. The left plot of Fig. 4.2 shows the expected distribution of the scattering

angle as a function of the energy of the photon while the right plot shows a histogram

generated by the simulation.

I then track the photon to the detector face where it interacts with the LSO

crystals in the same manner as discussed above. Fig. 4.3 shows the photofraction

and the log of the attenuation of LSO that I used in the simulation. The data that

I used to calculate the attenuation length of LSO are tabulated by Plechaty et al.

[61]. I continue to track the photon until it interacts via photoelectric effect or leaves

the detector volume. At each interaction, I assume that all the energy lost by the

photon is converted into scintillation photons. I determine the number of scintillation

photons nγ by multiplying the energy of the interaction with the conversion factor

of LSO, taken to be 25,000 scintillation photons/MeV. I add statistical noise to the

number of scintillation photons assuming a normal distribution with the variance
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Figure 4.3: Photoelectric Fraction and Linear Attenuation Coefficient of LSO

equal to the number of photons.

The total number of scintillation photons is divided between the PD and

the PMT such that nPDγ + nPMT
γ = nγ where nPDγ and nPMT

γ are linear functions of

the depth of interaction z:

nPDγ (z = 0) = αnPMT
γ (z = 0)

nPDγ (z = Lcrystal) = nPMT
γ (z = Lcrystal)/α (4.4)

for some constant α. z = 0 is an interaction at the photodiode end of the crystal

while z = Lcrystal is an interaction at the photomultiplier end. Thus, we have

nPDγ (z) = nγ
z + α(Lcrystal − z)

(α+ 1)Lcrystal

nPMT
γ (z) = nγ

(Lcrystal − z) + αz

(α+ 1)Lcrystal
(4.5)

I use α = 3 and Lcrystal = 3.0 cm. The number of photons impinging on the photode-

tectors is then multiplied by the quantum efficiencies and gains of the photodetectors.
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Statistical and electronic noise are added (in quadrature) to the signal recorded for

the photodetectors.

4.1.3 Detector Compton Scatter

Compton scatter in the detectors can lead to mispositioning of events. If a

photon deposits energy in more than one crystal, the location of the first interaction

must be identified in order to assign the event to the correct LOR. With crystal

dimensions 0.3×0.3×3.0 cm3, the probability that a normally incident 511 keV pho-

ton deposits energy in one, two, and more than two crystals is 70%, 24% and 6%

respectively.

We studied algorithms to correctly identify crystals of first interaction in

Compton scatter events [62]. All the algorithms attempted to exploit the fact that

energy and momentum conservation require the energy of the scattered photon is

given by Eqn. 4.3 with % = 1. Fig. 4.4 shows the kinematics of events with one
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Max Signal Reject Mult Sec Highest Joint
EFF τ = 0 keV, N/S = .4 83% 0% 83% 83%
EFF τ = 250 keV, N/S = .4 79% 68% 79% 79%
EFF τ = 350 keV, N/S = .4 65% 65% 65% 65%
MIF τ = 0 keV, N/S = .4 23% NA NA NA
MIF τ = 250 keV, N/S = .4 21% 19% 28% 23%
MIF τ = 350 keV, N/S = .4 15% 14% 14% NA
ROI τ = 0 keV, N/S = .5
r at 90% Containment 3.2 mm 3.4 mm 3.4 mm 3.4 mm

Table 4.1: Results of algorithm optimization for determining detector Compton
scatter

Compton scatter. If E1 is the energy deposited at the interaction point and E2

the energy of the scattered photon (which is assumed to deposit all of its energy at

another crystal), this relationship implies that there are three kinematic regions: I)

Unambiguous forward scatter. When θ < π
3 , E1 < E2 and there is no θ′ such that

E′
1 = E2 (and E′

2 = E1). Therefore the crystal of interaction can be unambiguously

determined from the energy alone. II) Ambiguous forward scatter. When π
3 < θ < π

2 ,

E1 < E2 but there is a θ′ such that E′
1 = E2 (and E′

2 = E1). θ = π
3 and θ′ = π

is an example of such a pair. Therefore, the crystal of first interaction cannot be

unambiguously determined from the energy values alone, as backwards scatter (i.e.

events from Region III) produces events that yield identical energy deposits. III)

Backwards scatter (always ambiguous). When θ > π
3 there is always a θ′ such that

E′
1 = E2, (i.e. events from Region II).

Algorithm performance is evaluated with three figures of merit: a) the

Singles Efficiency (EFF), defined as the number of events an algorithm assigns a

crystal of interaction (correctly or otherwise) divided by the total number of events

generated (this includes inefficiencies caused by the photon traversing the detector

without interacting), b) the Misidentification fraction (MIF) defined as the number

of misidentified events divided by the number of events in which an algorithm assigns
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a crystal of interaction, and c) a region of interest (ROI) analysis of the reconstructed

image that plots the relative activity in circular regions of interest as a function of

the radius of the region. The ideal algorithm has high EFF, low MIF and a steep

rise in the ROI curve. For the purpose of this analysis, we use a line source near

the center of a circular tomograph. This simplifies the ROI analysis where standard

reconstruction packages for circular reconstruction with regular sampling may be

used. As the results are dependent solely on the geometry and characteristics of the

module instead of the whole scanner, applying them to the PEM camera is justified.

Four algorithms were evaluated: a) Maximum Signal. This algorithm se-

lects the channel with the largest measured energy deposit as the crystal of first

interaction, rejecting events where the maximum signal is below an energy threshold

(τ [keV]); b) Reject Multiples Algorithm. This algorithm eliminates Compton inter-

actions by rejecting events with two or more signals above an energy threshold; c)

Second Highest Signal Algorithm. This algorithm selects the channel with the smaller

signal when two signals are above the energy threshold. d) Joint algorithm. This

algorithm is a hybrid algorithm, performing as the Maximum signal when the N/S

ratio is low and as the Second highest algorithm when the N/S ratio is high. N/S

ratio is the ratio of the electronic noise to the average signal generated by a 511 keV

photon. The performance of the Joint algorithm is accomplished by comparing the

difference between the highest and the second highest signals, EDIFF, to a second

energy threshold, δE . The crystal with the second highest signal is chosen if EDIFF

< δE , otherwise the crystal with the highest signal is selected. A large value of δE is

chosen when the N/S ratios are high and a small value of δE is chosen when the N/S

is low. We assume that the energy resolution of the detector modules from counting

statistics is 12% FWHM at 511 keV. While this value is optimistic, Comanor et

al. [62] shows that the results are insensitive to this value.

Table 4.1 shows the results of the study. The Reject Multiples algorithm can

give an extremely low MIF but only at the expense of EFF. The Second Highest Signal

performs as well as the Maximum Signal but only when the noise is low, i.e. when
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Figure 4.5: Simplified PEM Geometry with one module plane.

the N/S ratio is below 0.2. The Joint Algorithm performs like the Second Highest

Algorithm at low N/S ratios if the appropriate δE is chosen. The ROI analysis does

not distinguish one algorithm from another. The conclusion of this study is that

merely taking the crystal with the highest signal as the interaction crystal does not

have adverse effects on the reconstructed image. The crystal with the highest signal

will be defined as the crystal of interaction.

4.1.4 Simplified Camera

Keeping matters simple at first, I simulate a simplified camera composed of

detector elements with an attenuation constant of λγ = 1.2 cm and 100% photoelec-

tric fraction. Fig. 4.5 shows the geometry of the simplified camera. It is equivalent to

one detector module plane of the full camera. Only the (8×8) array of (3×3×30) mm3

crystals are shown. There is a 0.6 cm overlap between the detector banks to avoid

gaps between the detector modules making the “patient port” 9.6×6.0 cm2. While

the camera is designed to allow the long banks to move in order to accommodate

subjects of varying sizes, I only consider this setting of the camera. Optimizations

for other aspect rations of the camera can be performed in a similar manner as I

present here.
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In the present case of 2D simulation, I consider a detector that is only

one module high, i.e. the axial extent of the camera is ± 1.2 cm. However, since

I reconstruct events that are detected by crystals in the same plane, I generate

essentially in-plane events with the polar angle θ = π
2 ± tan−1 0.3cm

6.0cm . The small

deviation from the xy plane is twice the largest angle that an event can have and

still be detected by one crystal plane. Cross plane events are not included in the

reconstruction.

As I mentioned in §4.1.2, a true simulation of the PET data acquisition must

include scatter in the object being scanned. However, I do not model the scatter in

this dissertation and so I trace the pair of 511 keV photons to the detector faces

without any deviation from their original directions. The photons are then allowed

to penetrate into the crystals with an attenuation length λγ = 1.2 cm. I assume a

100% photofraction with all the energy of the photoelectron being deposited in only

one crystal and at the point where the photon interacted. Scatter in crystal will be

studied in later sections of this chapter. The generation of scintillation photons and

the number detected by the PMT and the PD is also postponed until a more realistic

simulation is done later in the chapter. In the meantime, the DOI information is

determined by smearing the “true” interaction points by a Gaussian distribution

along the major axis of the crystal. I use distributions with fixed widths of 0.0 mm

(true interaction point), 5.0 mm and 10.0 mm FWHM.

4.2 Reconstruction: Fourier Methods

4.2.1 Sampling

One of the major challenges in reconstructing images for the PEM camera is

the irregularity of its sampling. The extension of the FOV to include the entire region

enclosed by the detector modules exacerbates this problem. Filtered Backprojection,

the method of reconstruction which I employ in this thesis, assumes that the sinogram
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Figure 4.6: Definition of Chords with and without DOI.

data are sampled regularly in the radial direction and at uniform angular increments.

Sinograms from circular PET cameras are in good agreement with these assumptions

provided that the FOV from which the sinogram data are taken is limited to the

central region of the camera. The PEM camera violates both assumptions. Radial

sampling is only approximately regular when chords are defined between opposite

sides (banks) of the camera. In addition, the angular sampling is nowhere regular.

Chords (or lines of response, LOR) without DOI are defined by connecting

the front faces of crystals as shown in Fig. 4.6. This is the standard definition

of chords in PET. The intrinsic sampling density in sinogram space of the camera

is shown in Fig. 4.7. The FOV fills a region of sinogram space that resembles an

hourglass. The irregular sampling of the tomographic data, both in s and φ, resulting

from the rectangular geometry is readily apparent, even at the line s = 0 where the

sampling would be regular if the camera were circular.

In contrast, chords with DOI are defined as connecting the photon inter-

action points perpendicularly projected onto the long axis of the crystal. This is

also shown in Fig. 4.6. Fig. 4.8 shows the sampling of the detector if the true DOI

were measured. This scatter plot is produced by the Radon coordinates of events

from a simulated flood source. We define chords with DOI using the long axis of the

crystal because we have no information of the location of the interaction in the plane

perpendicular to this axis. In keeping with the standard definition of chords in PET,

this definition defaults to the center of the crystal face if the interaction occurred at

or close to the face of the crystal.
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Figure 4.7: Sampling Density without DOI information.

Figure 4.8: Sampling Density with DOI information. Regions (A), (B), and (C) are
discussed in text.
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There are several distinct regions in the sinogram sampling using DOI

(Fig. 4.8). Regions (A) and (B) near φ = 0 and φ = π
2 respectively, represent

chords formed by photons normally incident on the crystal faces. The DOI provides

no new information because the interactions that occur in the same pair of crystals

but different depths are mapped to the same chord and are thus degenerate 1. Sam-

pling in these regions is almost identical to that in Fig. 4.7. Note that DOI improves

the sampling significantly even at small angles from φ = 0 and φ = π
2 . Region

(C), the slightly dense areas that cross the hourglass, represent chords formed by

crystals from corners of the camera. The detection efficiency is low in these regions

because there is less detector material. This loss in efficiency can be corrected by

normalization. The rest of the sinogram exhibits high sampling density.

Previous works have addressed the issue of irregular sampling in PET cam-

eras. Camera motion and non-circular camera geometries [63] also result in irregular

sampling of the sinogram. Circular cameras use a 1
d sampling rate where d is the

dimension of the crystals face. As mentioned in Chapter 1.3.2, this sampling rate

actually increases away from the center of the tomograph. Camera motion is em-

ployed to increase the sampling density of the camera. Huesman et al. [64] use a

clamming motion where the camera alternates between two positions, clam-open and

clam-closed [65]. The sampling issue is often addressed by rebinning the acquired

data into regularly sampled sinogram bins. Interpolation is often required to achieve

evenly spaced sampling, effectively increasing the radial bin width of the sinogram

and often degrading spatial resolution. The DOI information of the PEM camera

increases the sampling density without camera motion and it allows us to rebin our

data with minimal interpolation. However, as I will show, while the data from the

camera can be binned in regular radial bins, angular binning is inherently irregular.

Regular radial binning is desirable in order to be able to use the Fast Fourier

Transform (FFT). The FFT is an efficient calculation of the discrete Fourier trans-
1Degeneracies are different chords that lie on the same point in sinogram space.
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form of a sampled function provided that the samples are taken at regular intervals2.

Recall that in the inversion of the Radon transform, the Fourier transform is only

over the radial variable s. Thus, we only need to ensure that linear sampling is

regular. Since computation time is a consideration in image reconstruction, I take

advantage of the FFT and construct my sinograms with regular radial bins.

I study two angular sampling schemes: a) one whose angular sampling is

as close to uniform angular sampling as possible, and b) one based on the grossly

nonuniform pattern obtained from a rectangular camera with discrete detectors. The

first sampling scheme is called Fixed Width (FW) scheme and the second is called

Natural Width (NW) scheme. The DOI information is essential to these schemes as

the challenge is to exploit the extra information where it increases sampling density

while appropriately treating the sinogram regions where it does not.

4.2.2 Sinogram Parameters

The speed and simplicity of FBP make it a convenient choice as a recon-

struction algorithm for the PEM camera. As shown in Fig. 4.8, continuous DOI all

but removes the concern about irregular sampling. Discrete sampling only occurs

in regions (A) and (B) which from hereafter I call “the problem regions.” The high

sampling density of the camera allows the use of quarter-crystal-width (0.75 mm)

radial bins throughout most of the sinogram. For obvious reasons, this sampling

scheme is called d
4 sampling. The choice of small bins allows the maximal use of

the DOI information while the choice of regular sampling allows the use of the FFT

in filtering of the sinograms. The small bin size also assures high resolution in the

images. This choice of sinogram bin size leads to empty (zero efficiency) sinogram

bins only near the problem regions and only when regular angular increments are

used.

Zero efficiency bins (ZEB) result in streak artifacts in images that radiate
2The other requirement that the number of samples be a multiple of two can be taken cared of

by padding the data with zeros.
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out from point sources or that traverse the FOV in extended sources. At worse,

they produce a cross-hatching effect in the reconstructed image. These artifacts are

readily apparent in reconstructed images because of the filtering that is done during

the reconstruction. ZEB in the midst of otherwise highly populated sinogram bins

represent a high frequency component in the Radon transform of the object. This is

evidenced by the sharp change in values between the ZEB and their neighbors. Recall

that the filter used in 2D reconstruction is the Ramp Filter f(k) = |k|. This filter

preferentially amplifies high frequency components while filtering out low frequency

components.

Since these streak artifacts can be thought of as a high frequency noise,

I can use an apodizing window on the Ramp filter to roll over the high-frequency

response. This is the conventional solution for camera systems with low statistics

(and therefore high levels of noise) which can have bins that mimic ZEB. However,

this is equivalent to convolving the reconstructed image with a blurring function to

smooth out the streak artifacts. This defeats our original goal of high resolution

reconstruction. I choose to correct these bins in sinogram space instead of using a

windowing technique in frequency space.

The use of the term “zero efficiency bin” is rather misleading. These bins

have zero efficiency because of the definition of chords. If I choose not to confine the

point of interaction to lie along the major axis of the crystal, all the bins should in

fact be filled. However, this procedure is equivalent to smoothing the sinogram with a

spatially variant kernel, which I will need to deconvolve out after the reconstruction.

Deconvolving a spatially invariant kernel in 2D is computationally intensive (not to

mention the fact that we will need to do this in 3D as well!). It is true that restricting

the location of the interaction point to lie along the major axis of the crystal is also

a form of spatially variant smoothing. However, there is “less” smoothing involved

in this procedure than in that which allows the interaction points to be anywhere

within the volume of the crystal. I will address this issue in Chapter 5.

For the same reason that small radial bins are used, namely to take full ad-
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Figure 4.9: Sampling Density with DOI information in Region (B) of Fig. 4.8.

vantage of the DOI information, I use small angular bins to sample φ. However care

is needed in selecting the angular widths to minimize the number of zero-efficiency

sinogram bins. I choose small angular bin widths in all the regions of the sinogram

except around the problem regions where I use angular widths dictated by the ge-

ometry. I accommodate this choice of variable angular bin widths by multiplying

each projection by a factor that is proportional to the angular width δφ. Eqn. 4.6

describes this procedure where f is the approximated image intensity at the current

pixel (i, j), Fn the nth of the N filtered projections, rij the distance from the center

of the tomograph to the pixel, and δφ is the angular width of the nth projection.

The factor is ignored in normal FBP because it is a constant when the projections

are taken at equal angular intervals.

f(xi, yi) =
N−1∑
n=0

Fn(rij cos
nπ

N
+ rij sin

nπ

N
) δφn (4.6)

Without crystal penetration, the predefined angular bin widths in the prob-
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Figure 4.10: Angular Binning Scheme.

lem regions are defined by the crystal widths and the dimensions of the camera. With

crystal penetration and DOI, however, these widths are slightly modified. Fig. 4.9

is an expansion of Region (B) in Fig. 4.8 with s ∈ [−1.0, 1.0]. The boundaries of the

angular sampling are chosen to bisect the clusters of points, yielding δφπ
2

= 0.050.

A similar procedure used around φ = 0 requires that δφ0 = 0.075. These values are

rounded to the nearest thousandths for simplicity. Fig. 4.9 also shows the d
4 sampling

of the s. All the sinogram bins are populated with the exception of the degenerate

chords which lie on bin boundaries. A similar pattern but with different spacing

occurs at φ = 0. Half of the events from these chords are assigned to each of the

bins upon whose boundaries they lie. This simple procedure of minimal interpolation

leaves no unpopulated sinogram bins.

We construct two angular binning schemes to bin the events in the regions

of dense sampling. The Natural Width scheme (NW) uses half the widths of the

intrinsic sampling angles of the camera at s = 0 (Fig. 4.7). The widths are then
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Figure 4.11: PSF Reconstruction.

smoothed (except at φ = 0, π2 ). The fixed width scheme (FW) uses a fixed angular

width in the densely samples regions. At the problem regions, we use three angle

bins with the predetermined widths. This gives a total of 120 angular bins for both

binning schemes. Fig. 4.10 shows the angle bin widths as a function of the sampling

angle for both the NW and FW binning schemes.

4.2.3 Reconstructed Images and Results

Before reconstruction, the sinograms are normalized to correct for sampling

and geometric efficiency variation in the camera. As I discussed in Chapter 2, PET

data is the Radon transform of the object in the FOV in the limit of inifinitely small

detectors with µ = 0 cm. In order to correct for the finite size and attenuation

length of the detector, each projection bin can be multiplied by a normalization

factor. This normalization factor can be calculated by taking PET data from a source

with a known Radon transform and performing a projection-bin-by-projection-bin
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Location 0 mm 5 mm 10 mm
(0.0, 0.0) 1.74(0.06) 1.90(0.05) 1.90(0.08)
(1.0, 0.0) 1.73(0.04) 2.15(0.13) 2.51(0.28)
(0.0, 1.0) 1.74(0.05) 2.17(0.04) 2.52(0.22)
(2.5, 1.5) 2.03(0.15) 2.35(0.06) 2.67(0.10)
(4.6, 0.0) 1.85(0.45) 2.81(0.12) 2.70(0.33)
(0.0, 2.8) 1.83(0.46) 2.70(0.08) 2.50(0.09)
(4.6, 2.8) 2.05(0.35) 2.51(0.14) 2.50(0.15)

Table 4.2: PSF Resolution for Various DOI Resolution.

comparison. The normalization is calculated by comparing a flood source sinogram

with the Radon transform of a box of the appropriate dimensions. We use filtered

backprojection with a ramp filter for reconstruction. In the FW angular binning

scheme, the projection data with the wider widths at φ = 0 are backprojected with
1
3 of the value at φ = −0.075

3 , 0, 0.075
3 . The same is done for the other two wider width

projection data on either side of φ = 0. Similarly, the projection data with the wider

widths at φ = π
2 are backprojected twice with 1

2 of the value at φ = π−0.050
2 , π+0.050

2 .

The same is done for the other two wider width projection data on either side of

φ = π
2 . The widths at φ = 0 and φ = π

2 are approximately thrice and twice the small

fixed width respectively.

Fig. 4.11 shows a set of reconstructed images of point sources of equal

intensities in various positions in the FOV. Perfect DOI resolution was assumed in

the data and FW angular binning scheme was used in building the sinogram. Shown

is the top right quadrant of the camera with the center of the FOV at (0,0). Table 4.2

lists the resolutions of the PSF. The variation in the number gives an indication of

the symmetry of the PSF, i.e. the smaller the variation, the more circular the shape.

The shapes of the PSF vary from circular at the center of the FOV to elliptical at the

corners and near the edge. The PSF’s near the edge have FWHM of 2.5 mm along

the long axis and as small as 1.0 mm along the short axis. The long dimensions are
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Figure 4.12: Realistic PEM Geometry with one module plane.

consistent with a 3 mm crystal width while the short dimensions are the result of the

DOI information. The apparent variation in the intensity of the sources is consistent

with the variation in their FWHM’s. ROI’s drawn around each point source have

equal activity.

I did not observe significant differences between the images reconstructed

with the FW versus the NW angular scheme as long as the sampling in the prob-

lem areas is done using the predetermined widths. Hereafter, I will present images

reconstructed with the FW binning scheme as it is easier to implement.

4.3 Realistic Camera

Having developed a reconstruction algorithm for a simplified detector, I now

add real world effects into the simulation. I include 0.5o FWHM acollinearity between

the photons and model fully-3D Compton scattering in the detector modules. I use

the properties of LSO in Fig. 4.3 to model scattering and attenuation. When energy

is deposited in more than one crystal, as in the case when the 511 keV Compton

scatters outside of the initial crystal, the crystal with the largest signal is chosen to

be the crystal of interaction. Patient scatter in the FOV and positron range are still
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not simulated. Reconstructions are limited to 2D so cross plane events are not used.

The overall energy resolution is 17% FWHM at 511 keV.

The DOI is measured as described in §3.3 and §4.1.2. The depth estimator

Γ is defined as the ratio of the PD signal and the sum of the PD and PMT signals. It

varies linearly with the DOI and I assume that it takes on values of .25 to .75 across

the 3.0 cm length of the crystal. Using Eqn. 4.5, I calculate the DOI from Γ by

z = Lcrystal
α− (α+ 1)Γ

α− 1
. (4.7)

Because of noise, however, Γ may take values outside [.25,.75] which will indicate

a DOI outside the volume of the crystal. In these cases, I assign the depth to the

appropriate end of the crystal, i.e. z = 0 when Γ > .75 and z = Lcrystal when

Γ < .25. I will return to this issue in Chapter 5. The depth is discretized into one of

eight DOI bins to model the DOI measurement resolution. Huber et al. [66] reports

on the characterization of modules which I model.

In addition to the effects I have enumerated, I place one-crystal gaps be-

tween the detector modules in anticipation of packing limitations in the camera.

The 2D acceptance of the camera drops by 10% due to the gaps. Fig. 4.12 shows the

geometry of the realistic camera.

4.3.1 Sampling Density and Sinogram Parameters

Fig. 4.13 shows the sampling density of the realistic detector. The discrete

DOI bins lead to an increase in the degeneracies in the sinogram. The 3 mm gaps

between the modules lead to unsampled x-shaped regions around φ = 0 and φ = π
2 .

The gaps in the corners result in unsampled regions around the (C) region of Fig. 4.8.

DOI information minimizes the effect of the module gaps as the unsampled regions

would have covered more of the sinogram if DOI were not measured.

Many of these problems are caused by DOI discretization. I address this

by adding noise to the calculated and discretized DOI to make it continuous again.

Since the interaction point is assigned to the center of the DOI bin, I add a length to
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Figure 4.13: Sampling density of realistic camera. The sampling points are calculated
from chords formed by connecting each DOI bin in each crystal with DOI bins from
other crystals.

the DOI drawn from the flat distribution [-1.875,+1.875] cm (30 cm / 8 DOI bins).

The DOI takes a continuous random value within the boundary of the discritized DOI

bin. The effect is to smooth the sinogram: more where it needs it and less where it

does not. The procedure results in a sinogram with which we can again use the same

angular binning schemes that we determined for the simplified camera. Fig. 4.14

shows a sinogram from a flood phantom after the DOI is smoothed. The dimensions

of the realistic camera are slightly larger than the ideal one but the differences result

in only small changes in the predetermined angles and widths at these angles.

The redistribution of events that I performed on the φ = 0, π2 now needs

to be done on a few more places in the sinogram. The procedure that I use is the

following:

• For each angular bin, locate the first and the last non-zero radial bins.

• Between these two bins, locate all the bins which have counts that are lower
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Figure 4.14: Sampling density of realistic camera after DOI smoothing. A small
random value is added to each DOI so that it becomes a random continuos variable
within the boudaries of each DOI bin.

than a set fraction than their adjacent bins. Define these bins as ZEBs.

• For each of the ZEBs, choose the bin on either side that has the higher event

count and assign to the ZEB and the chosen bin the average count of the two

bins.

• Mark any modified bin, ZEB or otherwise, so it is modified at most once.

This procedure can be used several times to eliminate ZEBs. Note that I have

redefined a ZEB such that instead of having a “hard 0,” it is any bin that has a value

that is below a fraction of the number of counts in an adjacent bin.

I reconstruct data from the realistic camera using a method similar to that

developed for the simple detector in spite of the fact that the real-world effects

exacerbate the sampling problems. The distribution of unsampled regions in the

sinogram is such that there is not a set angular bins (such as the FW or the NW)
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Figure 4.15: Reconstructed point sources within realistic camera. Shown is the right
quadrant of the FOV. Axes are in units of cm.

that will easily eliminate ZEBs. In addition, the locations of the poorly sampled

regions depend on the distance between opposing detector banks which is adjusted

for each patient. It would be desirable to use an algorithm which is not sensitive to

the changing camera dimensions.

4.3.2 Reconstruction and Results

The reconstruction of the sinogram of the realistic camera is essentially the

same as in the simplified camera except that in the realistic camera, ZEB persist

even after the redistribution of the sinogram data between radial bins as prescribed

in §4.2.3. These ZEB are the result of gaps in the corners of the camera, between

the adjacent detector banks. The ZEB resulting from the gaps between modules of

the same bank are eliminated by the addition of noise to the DOI. To remedy the

situation, I use the Iterative Reconstruction Reprojection (IRR) developed by Medoff

et al. [67] to estimate the missing data. The IRR algorithm first reconstructs the
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Location PSF FWHM
(0.0, 0.0) 1.92(0.16)
(1.0, 0.0) 2.14(0.13)
(0.0, 1.0) 2.37(0.13)
(2.5, 1.5) 2.42(0.10)
(4.6, 0.0) 2.81(0.21)
(0.0, 2.8) 2.44(0.22)
(4.6, 2.8) 2.79(0.23)

Table 4.3: PSF Resolution for Various DOI Resolution.

image from the incomplete sinogram and then, using a priori information in the form

of constraints, forward projects the reconstructed image into the gaps to estimate

the values of the missing information. I use the positivity constraint, i.e. setting all

negative pixels to zero, in the intermediate images as a priori information. Iteration

of this process gives the final image.

Fig. 4.15 shows the reconstructed image of the point sources in the same

location as in the ideal camera, again reconstructed using the FW angular binning

scheme. I performed only one iteration of the IRR algorithm since the image quality

did not change dramatically with subsequent iterations. Table 4.3 lists the FWHM

of the point sources at various locations in the FOV of the realistic camera. The

apparent differences in intensity of the point sources are due to the variation in the

sizes of the reconstructed PSF. The intensities are proportional to the inverse of the

the square of their width. ROI’s placed around these points yield identical activities.

Fig. 4.16 shows a reconstruction of three extended sources and a point

source. The image represents the entire FOV of the camera. I simulated a circle

and two ellipses of various activities at various locations in the FOV. The circle

has a radius of 0.5 cm while the semi-minor and semi-major axes of the ellipses are

(0.5, 1.25)cm for the vertical ellipse and (0.5,2.25) cm for the horizontal ellipse. The

simulated relative activities, in the order circle:vertical ellipse:horizontal ellipse are
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Figure 4.16: Reconstructed extended sources within the realistic camera (a circle,
two ellipses and a point sources). Image represents the entire FOV of the camera.

1.00:0.63:0.73. The image represents 106 annihilation events. The shapes of the

source structures are sharp and their activities are relatively constant within their

boundaries. The relative activities are consistent with the inputs to the simula-

tion. I have included a point source to the right of the vertical ellipse which has a

reconstructed FWHM of 2.30(0.20) mm, consistent with Table 4.3.

4.4 Summary of 2D Reconstruction Procedures

The following is a list of the procedures that need to be done in order to

successfully reconstruct 2D images using data from the PEM camera. In this list, I

do not assume that the aspect ratio of the PEM camera is as I have described in this

chapter. After all, the long sides of the camera are designed to move. If the aspect

ratio were as I describe, then the optimal values of the parameters and variables that

I mention are stated in this dissertation.



83

• Determine a set of azimuthal sampling angles φi and angular bin widths δφi

that will minimize ZEBs. In particular, the sampling widths at the degenerate

directions φ = 0, π2 needs to be carefully chosen.

• Add a random value within the boundaries of a DOI bin to each event’s DOI

and calculate the Radon variables s with the modified interaction point.

• Calculate normalization values. I have used the ratio of flood phantom data and

the Radon transform of a rectangle to calculate my normalization values. Note

that the nearest neighbor smoothing that will be done on the data needs to be

done on the high statistics data that will be used to calculate the normalization

values.

• Set the data in all projection bins with normalization values above a specified

threshold to 0. The threshold is determined by inspecting the distribution of

normalization values. A drop of two orders of magnitude in the distribution

may indicate an appropriate threshold.

• Perform nearest neighbor smoothing on the data in the regions of ZEBs, making

sure that each projection bin is modified at most once. Normalize the data with

pre-calculated normalization file.

• Filter the sinogram in the Fourier domain. I have used the Ramp filter with

sharp edges.

• For each projection direction, i, calculate wi = δφi
δφmin

, the ratio of its angular

bin width and the minimum angular width. Let Ni be the round off value of

wi.

• Multiply the ith projection by wi
Ni

and backproject at φ′ij = φi− δφi
2 +(j+ 1

2) δφiNi ,

j = 0..(Ni − 1).
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• Perform the IRR by setting all negative pixels to zero and forward projecting

the reconstructed image. Substitute the value of the forward projected data

for all the ZEBs in the original normalized sinogram.

• Repeat the procedure starting from filtering of the “filled-in” sinogram until

object is reconstructed. Simulations indicate that one iteration will be suffi-

cient.
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Chapter 5

Reconstruction in 3D

This chapter discusses the 3D Reconstruction for the PEM Camera. There

is one overriding reasons for extending PET imaging to 3D. A camera able to oper-

ate in fully-3D mode has higher sensitivity compared to a camera that is limited to

2D-imaging. Table 5.1 shows typical gains in geometric acceptances for conventional

PET cameras (cylindrical) and the PEM camera by operating in 3D mode. Two

cylindrical PET geometries are shown. In one configuration, the radius is twice the

height of the cylinder, which is most common in current whole-body PET cameras.

In the other configuration, the height is equal to the radius. High resolution cameras

optimized for head imaging are currently being proposed and built with this geome-

try [12]. The acceptance increases by at least an order of magnitude for all but the

flood source in the PEM camera which increases by a factor of eight.

Higher acceptance translates to higher number of events which means better

image statistics. The single largest component of image resolution is crystal size and

with the trend for smaller and smaller crystals, the physical limit of 0.2 cm resolution,

for FDG PET, is nearly realized in 2D imaging. Thus, the gain in 3D imaging is not

in resolution but rather in improved image statistics. The benefit of using 3D PET

is in the quieting of noise in historically event-starved PET data.

Higher acceptance can also mean shorter scanning times and lower radiation
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Detector Simulated Phantom 2D Acceptance 3D Acceptance
Cylindrical 2h = r Point source at center 0.75% 24.35%
Cylindrical 2h = r Flood source 0.95% 15.36%
Cylindrical h = r Point source at center 0.75% 44.74%
Cylindrical h = r Flood source 0.95% 28.40%
PEM Point source at center 3.75% 62.02%
PEM Flood source 4.98% 38.75%

Table 5.1: Geometric Acceptance of Detectors.

dosage to the patient. Since the acceptance is increased, for a fixed amount of FDG,

a larger fraction of the total number of annihilations become available as data. This

allows for the possibility of decreasing the amount of FDG injected into the patient

which translates to a lower radiation dose. In addition, it takes a shorter amount of

time in 3D scans to acquire the same number of events as with 2D scans. Shorter

scanning times mean less inconvenience to the patient, and a decreased likelihood

that the object being scanned will move. Object motion during a scan can lead

to inconsistent data and therefore difficult to reconstruct. At best, the motion will

result in further blurring of the reconstructed image.

Current PET cameras are in fact capable of operating both in 2D and

3D modes, acquiring in 3D mode by retracting the septa between detector planes.

Typically, a 2D scan is performed to measure the attenuation map that is used to

correct for object attenuation in the 3D data acquired when the septa are retracted.

The PEM camera, however, will not have septa and therefore has to operate in

complete 3D mode. Fig. 5.1 shows the a frame model of the geometry of an idealized

PEM camera, analogous to that in Fig. 4.5 for the 2D case.
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Figure 5.1: Wireframe image of idealized PEM Detector Geometry. Longest axis is
the x axis while axial direction through the FOV is the z axis. Modules are grouped
together in banks corresponding to the four sides of the rectangular FOV. The axes
are in units of cm.
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5.1 X-ray Transform

The use of the Radon Transform in 2D reconstruction is quite curious in

that most of the development in reconstruction tomography occurred before the

connection between the Radon transform and the reconstruction problem was estab-

lished. Bracewell [24] gave the first solution to image reconstruction in the context of

mapping the microwave radiation from the sun. Much of the early advancements in

reconstruction tomography can be drawn from this work. However, when it became

clear that the continuous inverse problem has been solved by Radon, virtually all of

reconstruction tomography was cast in relation to the Radon transform. Thus, today,

discussions regarding image reconstruction usually begin with the Radon transform.

However, 3D reconstruction does not involve the 3D Radon transform. In-

stead, it involves a related transformation: The X-ray transform. Up to a rotation,

the 2D Radon transform corresponds to the X-ray transform. Our discussion of

the Radon transform in Chapter 4 is nevertheless useful because virtually all the

properties of the Radon transform applies to the X-ray transform as well. The inver-

sion of the X-ray transform also closely follows the formulae of the Radon transform

inversion.

The X-Ray transform is defined as

Pf(u = x⊥, ω) =
∫
R
dt f(x − tω); ω · x = 0. (5.1)

I have explicitly labeled the Cartesian coordinates of the transform as x⊥ to indicate

that it is perpendicular to ω, the unit vector in the direction of the projection. Note

that dim(u) = dim(x) − 1. Fig. 5.2 shows the coordinate system used for the 3D

x-ray transform. For this thesis, the parametrization of the transform that I use is

the following

Pf(u, v, θ, φ) =
∫
R
dt f






cos θ cosφ − sin θ sin θ cosφ

cos θ sinφ cos θ sin θ sinφ

− sin θ 0 cos θ





u

v

t




 . (5.2)
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Figure 5.2: Coordinate System Used for 3D X-ray Transform.

Note that this is simply the integration of the function f along a rotated z-axis t.

The projection data are a function of four variables. Each polar and az-

imuthal angle defines a plane within which two other variables are required to specify

the point at which the function is evaluated. This means that the data set in 3D

reconstruction is redundant in the sense that while it requires only three parameters

to determine the value of the function in coordinate space, it requires four parame-

ters to determine its value in projection space. Recall our discussion in the inversion

of the Radon transform that the reconstruction of a 3D object maybe done by stack-

ing 2D reconstructions of the object. The redundancy in 3D projection data makes

this possible. As we shall see, this redundancy will allow us to bypass some of the

problems that we have encountered in reconstructing images in 2D.

Fig. 5.3 shows a subset of the projections of a parallelepiped that has the

same dimensions as the FOV of the PEM geometry. The top left image (orientation

is landscape) is the projection at θ = π
2 and φ = 0., i.e. the projection along the
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x-axis. Moving to the right increases φ by approximately 0.625 rad and moving down

increases θ by approximately 0.125 rad.

The Radon transform and the X-ray transforms are related by the following

equation:

Rf(s, ξ) =
∫
du Pf(u, ω) δ(s− u · ξ); ξ · ω = 0. (5.3)

Note that in R3, the Radon transform is an integration of a function over planes

whereas the X-ray transform is still an integration over lines. In addition, the pro-

jection direction ω is perpendicular to the Radon vector ξ. The properties of the

Radon transform discussed in §2.2.2 hold for the X-ray transform except the formu-

lation of the Central Slice Theorem. The Central Slice Theorem is modified to reflect

the change in definition of projection direction. In R3, it reads:

F3f(kx) = F2Pf(ku, ω). (5.4)

Comparing this to Eqn. 2.33, we see that the only difference between them is that

the dimensionality of the Fourier transform performed on the right-hand-side. Proof

of Eqn. 5.4 follows.

[FuPf ](ku, ω) =
∫
du e−iku·uPf(u, ω)

=
∫
du e−iku·u

∫
dt f(u − tω). (5.5)

Now recall that u ⊥ ω so that x = u − ωt⇒ dx = du dt. Therefore

[FuPf ](ku, ω) =
∫
du dt e−iku·ue−iktt f(x)

∣∣∣∣
kt=0

= Fnf(kx)|kt=0 . (5.6)

It may seem that as in the case of the Radon transform in 2D, reconstructing

PET images in 3D means inverting the X-ray transform. Indeed, that would be the

case if, as in the case of 2D reconstruction, we have a sampling of all the projections of

the object we are reconstructing. Note that this may seem contradictory to an earlier

statement that one does not need all the projections of a 3D image to reconstruct
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the object. To reconstruct a 3D object, one can stack 2D reconstructions of the

object. But this is not what is meant by “fully 3D” reconstruction for which all the

projections are needed. However, unless PET cameras cover the entire object being

scanned, there will always be projections that are not sampled.

Hence, I will not give the inversion of the X-ray transform. Instead, I will

discuss 3D image reconstruction that is based on the X-ray transform but does not

explicitly involve its inversion, but rather, a 3D generalization of the 2D Filtered

Backprojection procedure. An inversion of the X-ray transform using the Riesz

Potential is given by Natterer [26].

5.2 Filtered Backprojection in 3D and Colsher’s Filter

Recall the definition of the Backprojection operator B in R2 (Eqn. 2.39).

Backprojection of the projection data in R2 resulted in the blurred image of the

object. More precisely, given f(x),x ∈ R2 as the object in the FOV and p(s) as the

projection data,

Bp(s) = f(x) ⊗ 1√
x2 + y2

. (5.7)

In filtered backprojection techniques, the deconvolution is performed in the frequency

space of the projection data before it is backprojected. Colsher [68] extended this

method into R3 by determining the filter that needs to be applied to the 3D projection

data before it is backprojected into the FOV. I detail his method below.

Colsher’s method can be seen as a system and response problem where the

signal is the object f , the system is the blurring function h and the response is the

reconstructed object g. We can write this as

g(x) =
∫
d3x′ f(x′)h(x,x′). (5.8)

If the response function h is shift invariant, then we can write Eqn. 5.8 as

g(x) =
∫
d3x′ f(x′)h(x − x′), (5.9)
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which can be written in frequency space as

G(k) = F (k)H(k). (5.10)

Thus, if h is shift invariant, f is obtained by the inverse Fourier transform of

G(k)H(k)−1. Otherwise, the system response h needs to be determined for each

point within the FOV.

Given the largest “polar” angle accepted by the camera as θmax = ψ, as

shown in fig. 5.4(A), the response function at the center of the tomograph, in spherical

coordinates, is given by [69]

h(r, θ, φ) =
1
r2

Π(θ;
π

2
, ψ) (5.11)

where Π is the pulse function defined in Eqn 2.3. The factor 1
r2

comes from the

dimensionality of the problem, i.e. the radial component of the volume element in

R3 is r2. The pulse function indicates that we will only backproject events which

have a polar angle within ψ of the x−y plane. Note that for points on the z-axis, the

value of ψ varies, which means that the response function is not shift invariant. In
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order to satisfy the shift invariance constraint, conventional cameras take data from

within a predefined extent in z and the minimum ψ∗ is used. ψ∗ = 0 is equivalent to

stacking 2D reconstructions to make up the 3D image.

I now give a derivation of Colsher’s Filter, taken from [68]. Because of the

azimuthal symmetry of h(r, θ, φ), Colsher calculates H(kr,Θ), the Fourier transform

of h(r, θ) by using the following form of the transform [70]

H(kr,Θ) = 2π
∫ ∞

0
r2dr

∫ π

0
sin θdθ h(r, θ) J0(2πkrr sinΘ sin θ) exp(−2πikrr cos Θ cos θ)

=
π

ψ

∫ π
2
+ψ

π
2
−ψ

sin θ dθ
∫ ∞

0
dr J0(2πkrr sinΘ sin θ) exp(−2πikrr cos Θ cos θ)

=
1

2ψkr

∫ π
2
+ψ

π
2
−ψ

sin θ dθ√
sin2 Θ sin2 θ − cos2 Θ cos2 θ

(5.12)

since [71] ∫
dt J0(at)eibt =

1√
a2 − b2

(5.13)

J0 is the 0th order Bessel Function. Using several trigonometric substitutions, Eqn. 5.12

can be reduced to

H(kr,Θ) =
| sinψ|
2ψkr

∫
R
d sin θ

Π(sin θ; 0, sinψ)√
sin2 Θ − sin2 θ

=
1

2ψkr

{
arcsin

(
sinψ
| sinΘ|

)
− arcsin

(− sinψ
| sinΘ|

)}
(5.14)

where the integration in the last step is done by parts. Recalling that the arcsin

function is complex when |Θ| ≤ ψ, the reciprocal of H(kr,Θ) may be written as

H−1(kr,Θ) =




ψkr
arcsin sinψ

| sin Θ|
|Θ| > ψ

2ψkr
π |Θ| ≤ ψ

(5.15)

Note that in the limiting case that ψ = 0, corresponding to a 2D scan, H−1 reduces

to kr| sinΘ| which is the projection of the vector k onto the xy plane. This is the

Ramp Filter discussed in §2.2.4.
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The filter that is applied to the planes before they are backprojected are

therefore given by the slices through this 3D filter,

H−1
θ (ρ, α) =




ψρ

sin−1 sinψ√
sin2 α+cos2 α sin2 θ

if | sin2 α+ cos2 α sin2 θ | > sin2 ψ

2ψρ
π otherwise

(5.16)

(ρ, α) are the cylindrical-polar coordinates within the projection plane. They are

illustrated in fig. 5.4(B)

5.2.1 Truncation: Missing Information

The thrust behind the formulation of Colsher’s Filter was the assumption

that the blurring function of the camera is spatially invariant. Filtering the projection

data prior to backprojection is equivalent to deconvolving the blurring function from

the image, and this only works if the function has the form h(x,x′) = h(x − x′).

The spatial variance of the blurring function can be corrected by the appropriate

normalization, just as we have done in the 2D case. Post-normalization, the corrected

data approximates data taken from a system with a spatially invariant response

function.

Colsher’s method works if all projections within the polar range |θ− π
2 | < ψ.

However, because PET cameras, do not cover the entire subject being scanned,

some projection bins which are within the designated polar range are truncated,

i.e. they are not measured. Fig. 5.4 shows this truncation. While normalization

corrects for the variations in the efficiency of each projection bin, it cannot restore the

truncated data. This truncation makes the response function spatially variant, with

the truncated data effectively being zero efficiency bins. This missing information

needs to be addressed before Colsher’s filter can be applied to the data.

Fig. 5.5 shows the effect of truncation on the ideal projections of the PEM

FOV shown in Fig. 5.3. Because of the shape of the PEM, the truncation is dependent

on the azimuthal angle φ. This is contrast to circular cameras where the truncation
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depends only on the polar angle θ. Fig. 5.6 shows the fraction of bins in each

projection plane that are truncated.

5.2.2 Kinihan and Rogers Algorithm (3DRP)

The solution for the truncation problem lies in the redundancy of 3D pro-

jection data. As I noted earlier, while the object being scanned is a function of three

variables, x ∈ R3, the projection data is a function of four variables, s ∈ R2 ⊗ Ω2.

Kinihan and Rogers exploited this fact to resolve the truncation problem with their

3D Reprojection-Projection algorithm (3DRP) [72]. Their method is akin to the

IRR algorithm of Medoff et al. discussed in § 4.3.2. An initial 3D image is recon-

structed from stacks of 2D images taken from the in-plane data. This is analogous

to reconstructing an initial image with the incomplete data in the IRR algorithm.

The difference between the two procedures is that while the initial image in the IRR
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algorithm is only an approximate image, even if there were an infinite number of

events, the initial 3D image in the 3DRP is in fact a true representation of the im-

age, differing only from a full 3D reconstruction by its noise properties. Therefore, if

there were an infinite number of in-plane events, there would be no need to perform

3D reconstruction. However, such is not the case.

The 3DRP algorithm then forward projects the initial 3D image into the

truncated projections, again in a very similar fashion as in the IRR algorithm. The

difference this time is that while a priori information is needed in the IRR algorithm,

there is no such requirement in the 3DRP algorithm. Again, this is because the stack

of 2D images is a true representation of the 3D image. Finally, while the IRR may

need several iterations of this procedure, the 3DRP only requires one.

Thus, the 3DRP algorithm is a two-pass algorithm using Colsher’s filter,

once with ψ = 0 and another with ψ = ψ∗. This has the benefit of increasing the

number of events that are used in the reconstruction procedure. In their original

work, Kinihan and Rogers essentially quadrupled the number of useful events in

their reconstruction by using ψ∗ = 0.1047 radians. As I shall show, this procedure

increases the useful events in the PEM camera by factor of 20 by using ψ∗ = 0.5375

radians.

The large acceptance angle of the PEM camera is the primary reason be-

hind the necessity of using 3DRP. There are many other algorithms that incorporate

off-plane events in the reconstruction. However, most of these algorithms are approx-

imations requiring that the polar acceptance of the detector be small. Among these

are the Single Slice Rebinning Algorithm (SSRA) [73] and the Multi Slice Rebinning

Algorithm (MSRA) [74].Both rebin the off-plane events into in-plane projections and

then reconstruct the 3D image by stacking 2D images. The SSRA rebins an event

to the plane at the mid point of the chord while the MSRA distributes an event

along all the planes that the chord intersects. The performances of these algorithms

depend greatly on a small acceptance angle.

A more recent technique for 3D reconstruction is the Fourier Rebinning
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Algorithm (FORE) [75]. Defrise et al. performs the rebinning of the off-plane events

in Fourier space instead of object space, and in the process, relaxing the require-

ment of small acceptance angles. At the time when I began studying reconstruction

algorithms for the PEM camera, the implementation of the FORE was only approx-

imate. The approximation required was ψ∗ < 0.25 or about half the acceptance of

the PEM camera. More recently, Xuam et al. [76] have developed implementations

of the FORE algorithm and have corrected the image distortions generated by the

FORE algorithm at large polar angles. The new algorithm, called FOREX, is capa-

ble of reconstructing images from cameras with polar acceptances of π
6 , comparable

to that of the PEM camera’s. I discuss the theory behind FOREX in Appendix A

because this may be a possible future direction for reconstructions for the PEM cam-

era. However, the idiosyncrasies of the PEM camera would undoubtedly require the

modification of the FOREX algorithm if it were used.

5.3 Normalization in R3

As in the 2D reconstruction, the data needs to be normalized if filtered

backprojection is used. InR3, the solid angle subtended by each detector pair varies

considerably. In particular, the detector pair close to the corners of the detector

subtends a much larger solid angle than a crystal pair on opposite banks.

In order to get the normalization data, we compare a flood phantom to the

line integrals through a rectangular parallelepiped that has the dimensions of the

FOV. The path of the line integrals depends on the parameters that will be used for

the projection data. However, in order to determine the optimal parameters for the

projection data, we need a normalization set in order to use filtered backprojection.

Thus, in anticipation of the optimal parameters, I will use the parameters determined

in the later sections to discuss the normalization set.

Recall that from §4.2, the normalization set is calculated on a projection-

bin-by-projection-bin basis by dividing the calculated line integral with the number
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Figure 5.7: Distributions of Normalization values, for 2D and 3D. The 2D figure has
been normalized so that it has the same number of events as the 3D histogram.

of events detected in that particular projection bin. The same procedure is used here.

However, there are two main differences between the normalization in the R2 and the

present one. First, because of the truncation, there will be many more zero-efficiency

bins for the R3 normalization data, although unlike the R2 case where the lack of

sampling is due to the binning of the data, all of these bins are truly unsampled.

Fig. 5.5 shows the truncation of the projections of the FOV. Second, because of the

increase in the dimensionality of the problem and the drop in geometrical efficiency

in going from 2D to 3D, the number of events necessary to generate a normalization

file is far greater than the 107 events used for the normalization in 2D. The plots

that will follow come from data sets with 8×108 annihilations.

Because of the finite number of events in the simulated flood phantom, I

need to put a threshold on the normalization value that I will use, setting those above

this threshold to 0. In R2, the distribution of normalization values is such that a cut

may be easily determined by observation. Fig. 5.7 shows the distribution of 2D and
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3D normalization values. The 2D histogram has been normalized to the number of

events in the 3D histogram. Note that a value such as 1.5 can be easily justified as

the cutoff for the R2 normalization values just by looking at the plot. This is not the

case for the 3D histogram. The reason is that in 2D, once a threshold normalization

is determined, I can check the relative number of bins that are going to have zero

efficiency by simply looking at the 2D sinogram of the normalization values. Ideally,

the normalization threshold is such that it minimizes the number of zero-efficiency

bins. In R3, it is conceivable that a threshold may tag a large number of bins as

zero- efficiency bins at particular projection directions. There is no guarantee that

the fraction of bins set to zero is not all located in a few arbitrary directions.

In order to choose the efficiency cut-off for the 3D reconstruction, I look

at the fraction of bins that are labeled as zero efficiency bins as a function of the

normalization cut and of the direction. I use θ and φ to parameterize the projection

direction. Fig. 5.8 shows this plot for cutoffs of eT = (1, 3, 5, 7, 9, 11). The plots

display the fraction of bins in each projection direction that is excluded, i.e. labeled

as zero-efficiency bins. Fig. 5.9 shows the distribution of the fraction of bins labeled

as zero-efficiency bins. From these plots, it appears that the cut eT = 6 will do. This

means that averaged over the projection directions, 20% of the bins will be labeled

as zero-efficiency bins.

5.4 Polar Acceptance

One of the important parameters in 3D reconstruction is the polar accep-

tance of the camera. Cameras with large polar-angle acceptance have the advantage

of increased sensitivity and thus better statistics and better reconstructed image qual-

ity. However, large polar acceptance can also mean large data sets which may pose

problems in data storage and in image reconstruction. Reconstruction algorithms

scale at best linearly with the size of the data set.

Determining how much of the available polar angle acceptance to use is an
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Figure 5.10: Angular Distribution of Detected Events.

optimization that I need to do. Recall that the solid angle available as a function of θ

is sin θ and thus the fraction of events that falls between θ and θ+dθ is monotonically

decreasing as θ decreases from π
2 . This means that at some θ, including more solid

angle increases our data size without the payoff of actually getting significantly more

events. Fig 5.10A plots the angular distribution of events detected by the PEM

camera. This histogram is taken from the true interaction positions of two photons

from a flood source in the field of view, i.e. the positions are not moved to lie along

the main axis of the crystals. Fig 5.10B is the same plot in log10 scale. The decrease

in the population of events around φ = .90 and φ = 2.5 are the familiar regions

where the detector banks overlap.

A large fraction of the events are contained along the band |θ − π
2 | < .2.

However, the average number of events does not drop by an order of magnitude until

|θ− π
2 | < .6. Fig 5.11 plots fraction of events that fall between π

2 and θ as a function

of θ. 90% of events are within 0.38 of θ = π
2 . Beyond this, in order to determine

how much of the available acceptance we need to use, we have to reconstruct images

using varying acceptances and evaluate how the images compare with each other.
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Figure 5.11: Cumulative Polar Distribution of Detected Events.

5.4.1 Signal-to-Noise Measurements: Parameters and Algorithms

Since the primary benefit of 3D imaging is noise reduction, I can use signal-

to-noise ratios as a figure of merit to determine how much polar acceptance to use.

For this purpose, I simulate a flood phantom and calculate the mean and variance

of pixels at various locations of the reconstructed image as a function of the polar

acceptance. Within the region of interest, the mean and variance estimates signal

and noise, respectively.

The data is taken from a simulation of the ideal 3D detector. The inter-

action locations are discretized and are initially assigned to the centers of the DOI

bin as I have done previously. The interaction point is then allowed to take a ran-

dom value within the DOI bin and the new location is used in the calculation of the

parameters of the event. The data are a simulation of 108 annihilations. The flood

source from which the normalization is calculated is eight times this number.

I use d
2 sampling so that I need not worry about the complications of un-

sampled projections other than those which are the result of data truncation. I use
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Proj Num θ δθ Proj Num θ δθ

0 0.770796 0.050 17 1.620796 0.075
1 0.820796 0.050 18 1.670796 0.050
2 0.870796 0.050 19 1.720796 0.050
3 0.920796 0.050 20 1.770796 0.050
4 0.970796 0.050 21 1.820796 0.050
5 1.020796 0.050 22 1.870796 0.050
6 1.070796 0.050 23 1.920796 0.050
7 1.120796 0.050 24 1.970796 0.050
8 1.170796 0.050 25 2.020796 0.050
9 1.220796 0.050 26 2.070796 0.050
10 1.270796 0.050 27 2.120796 0.050
11 1.320796 0.050 28 2.170796 0.050
12 1.370796 0.050 29 2.220796 0.050
13 1.420796 0.050 30 2.270796 0.050
14 1.470796 0.050 31 2.320796 0.050
15 1.520796 0.075 32 2.370796 0.050
16 1.570796 0.075

Table 5.2: Polar projection angles and widths.
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δθ = 0.05 for all of the polar projection angles, except at θ = π
2 and the projection

angle on either side where I use δθ = 0.075 . The reason for using this specific value

becomes clear when you consider that from the origin, the largest arc length between

two crystal centers in the polar direction is along the y-axis perpendicular to the xy

plane. This arc length is the same as in the azimuthal direction where δφ = 0.075.

Table 5.2 lists the polar angles of projection and their widths.

The image is divided into cubic voxels that have a linear dimension of
d
2 = .15 mm, equal to that of the projection bins. This means that there are a total

of Nx = 64, Ny = 40 and Nplane = 48. The numbering of the planes is such that

plane 0 is defined to be at the most negative z.

At first attempt, I use the FW angular scheme determined in our 2D re-

construction exercise, but with the angular widths twice the nominal value except at

φ = 0, π2 where δφ0 = 0.05 and δφπ
2

= .075. Therefore, I use Nφ = 6 + 120−6
2 = 63.

Recall that there is a π
2 difference in the definition of φ in R2 and R3 reconstruction

so that the width δφ = 0.075 is associated with the φ = π
2 direction in R3. The

reason for using twice the nominal width is that it seems reasonable to assume that

since we are using d
2 linear sampling instead of d

4 , sampling the azimuthal angle at

half the rate would be sufficient. However, the resulting reconstructed image of a

flood phantom reveals the insufficiency of sampling φ at a lower rate. Streaking in

the image was severe. Thus, the azimuthal angle will always be sampled at the angles

prescribed by the FW angular scheme determined in our initial 2D reconstruction.

The values are given in Tables 5.3 and 5.4.

The reconstruction uses the standard 3DRP algorithm [68] modified to ac-

commodate the irregular angular sampling both in θ and φ. The standard algorithm

is discussed in §5.2.2. In general, the modifications to the standard 3DRP algorithm

begins with the low-statistics 2D image being reconstructed in the manner discussed

in Chapter §4. The resulting image is forward projected in the manner prescribed by

the 3DRP algorithm. There is another modification to the algorithm at this point.

The polar directions where δθ is larger than the nominal value δθnom is reprojected
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Proj Num φ δφ Proj Num φ δφ

0 0.025000 0.050000 30 0.778782 0.024268
1 0.075000 0.050000 31 0.803050 0.024268
2 0.099268 0.024268 32 0.827319 0.024268
3 0.123536 0.024268 33 0.851587 0.024268
4 0.147805 0.024268 34 0.875855 0.024268
5 0.172073 0.024268 35 0.900124 0.024268
6 0.196341 0.024268 36 0.924392 0.024268
7 0.220610 0.024268 37 0.948660 0.024268
8 0.244878 0.024268 38 0.972929 0.024268
9 0.269146 0.024268 39 0.997197 0.024268
10 0.293415 0.024268 40 1.021465 0.024268
11 0.317683 0.024268 41 1.045734 0.024268
12 0.341951 0.024268 42 1.070002 0.024268
13 0.366220 0.024268 43 1.094270 0.024268
14 0.390488 0.024268 44 1.118539 0.024268
15 0.414756 0.024268 45 1.142807 0.024268
16 0.439025 0.024268 46 1.167076 0.024268
17 0.463293 0.024268 47 1.191344 0.024268
18 0.487562 0.024268 48 1.215612 0.024268
19 0.511830 0.024268 49 1.239881 0.024268
20 0.536098 0.024268 50 1.264149 0.024268
21 0.560367 0.024268 51 1.288417 0.024268
22 0.584635 0.024268 52 1.312686 0.024268
23 0.608903 0.024268 53 1.336954 0.024268
24 0.633172 0.024268 54 1.361222 0.024268
25 0.657440 0.024268 55 1.385491 0.024268
26 0.681708 0.024268 56 1.409759 0.024268
27 0.705977 0.024268 57 1.434027 0.024268
28 0.730245 0.024268 58 1.458296 0.024268
29 0.754513 0.024268 59 1.533296 0.075000

Table 5.3: A. Azimuthal projection angles and widths.
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Proj Num φ δφ Proj Num φ δφ

60 1.608296 0.075000 90 2.387078 0.024268
61 1.683296 0.075000 91 2.411347 0.024268
62 1.707564 0.024268 92 2.435615 0.024268
63 1.731833 0.024268 93 2.459883 0.024268
64 1.756101 0.024268 94 2.484152 0.024268
65 1.780369 0.024268 95 2.508420 0.024268
66 1.804638 0.024268 96 2.532688 0.024268
67 1.828906 0.024268 97 2.556957 0.024268
68 1.853174 0.024268 98 2.581225 0.024268
69 1.877443 0.024268 99 2.605493 0.024268
70 1.901711 0.024268 90 2.629762 0.024268
71 1.925979 0.024268 101 2.654030 0.024268
72 1.950248 0.024268 102 2.678298 0.024268
73 1.974516 0.024268 103 2.702567 0.024268
74 1.998784 0.024268 104 2.726835 0.024268
75 2.023053 0.024268 105 2.751104 0.024268
76 2.047321 0.024268 106 2.775372 0.024268
77 2.071590 0.024268 107 2.799640 0.024268
78 2.095858 0.024268 108 2.823909 0.024268
79 2.120126 0.024268 109 2.848177 0.024268
80 2.144395 0.024268 110 2.872445 0.024268
81 2.168663 0.024268 111 2.896714 0.024268
82 2.192931 0.024268 112 2.920982 0.024268
83 2.217200 0.024268 113 2.945250 0.024268
84 2.241468 0.024268 114 2.969519 0.024268
85 2.265736 0.024268 115 2.993787 0.024268
86 2.290005 0.024268 116 3.018055 0.024268
87 2.314273 0.024268 117 3.042324 0.024268
88 2.338541 0.024268 118 3.066592 0.024268
89 2.362810 0.024268 119 3.116592 0.050000

Table 5.4: B. Azimuthal projection angles and widths.
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Figure 5.12: Regions in the FOV. (0) The corners (1) the edges (2) the bulk (3)
the central region. The labels are used to identify where in each region the data are
taken for the signal-to-noise measurements discussed in the text. The boundaries in
the regions are meant to convey proximities of the defined areas.

Nreproj(θ) ∈ Z times such that

δθ′ =
δθ

Nreproj(θ)
< δθnom. (5.17)

This is so that an independent view of the object is used for the subsequent filtered

backprojection. Thus, in the present case, the low-statistics 2D image is forward

projected into the polar angles θ = π
2 ± 0.0375 instead of at θ = π

2 . This means

that we have two “independent” views to backproject during the final 3D filtered

backprojection. Note that this is in contrast to the procedure outlined in §4 where

the same view of the object is backprojected several times to address the issue of

not having enough samples. This is one of the benefits of reconstructing in R3, i.e.

because of the redundancy of the data, we can use the low-statistic image to estimate

the data in the views that are not measured. The technique uses the same principle

of estimating the truncated data with projections from the initial 2D reconstruction

of the object.

Because the PEM camera does not have the full rotational symmetry that

conventional PET cameras possess, I expect that the signal-to-noise ratio of the
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image will depend on where it is calculated in the field of view. For the purpose of

identifying regions in the FOV, I divide the FOV into four regions: 0) the corner

regions, 1) the edge regions 2) the bulk, and 3) the central region. The locations

of these regions are indicated graphically in Fig. 5.12. The corners are unique in

that the line-integral approximation of the data is bad because the crystal widths

are comparable to the typical lengths in the region. Since the solid angle available

for detecting photons is defined by the farthest detector, the edge regions are regions

with the smallest solid angles and therefore the fraction of annihilations coming from

this region is less than from other regions. The central region is unique because it is

the region that is sampled the most.

To calculate the signal and the noise, we choose regions of interest in one

of the four regions in the FOV. Choosing a region of interest involves defining a set

of pixels for which the mean and the variance of the pixel values are calculated. To

see the effect of varying ROI size, I perform the calculation for a 5×5, 10×10 and

15×15 pixel square region for each of the reconstruction planes.

5.4.2 Signal-to-Noise Measurements: Results

The results of the S/N calculations are shown in figures 5.13 through 5.16.

The ordinate shows the signal-to-noise ratio while the abscissa represents the number

of θ-projection sets used in the reconstruction. Thus, an increment in the x axis

represents the addition of another projection set in the reconstruction as compared

to the previous reconstruction. The new set of projections is δθ = 0.05 radians

from the previous one. Thus, the 2D reconstruction S/N value is the data point at

x = 1, the reconstruction that involves the in-plane events and the events binned at

θ = π
2 + .05 is the data point at x = 2, the reconstruction that involves the in-plane

events plus the events binned at θ = π
2 + .05 and θ = π

2 + .10 is at x = 3, and so on.

The data point at x = 16 represents the reconstruction that includes all the events.

Figures 5.13 through 5.15 are the plots for ROI’s of sizes 5×5, 10×10 and
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Figure 5.13: Signal-to-noise ratio of a 5×5 pixel array centered at 0A, 1A, 2A, and 3A
(Fig. 5.12) clockwise from the top left. Shown are planes 0(red), 8(yellow), 16(green),
24(cyan), 32(blue) and 40(purple). Each point along the abscissa represents the
addition of another projection that is 0.05 rad from the previous one. x = 0 is the
in-plane 2D reconstruction.
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Figure 5.14: Signal-to-noise ratio of a 10×10 pixel array centered at 0A, 1A, 2A and
3A (Fig. 5.12), clockwise from the top left. Shown are planes 0, 8, 16, 24, 32, 40.
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Figure 5.15: Signal-to-noise ratio of a 15×15 pixel array centered at 0A, 1A, 2A and
3A (Fig. 5.12), clockwise from the top left. Shown are planes 0, 8, 16, 24, 32, 40.
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Figure 5.16: Signal-to-noise ratio of a 15×15 pixel array centered at 0B, 1B and 2B
from the left (Fig. 5.12). Shown are planes 0, 8, 16, 24, 32, 40.
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15×15 respectively. For all the plots, the top-left plot is the ROI that is taken from

the corner region (0A) in Fig. 5.12, the top-right plot is the ROI from edge region

(1A), the bottom-right from bulk-region (2A) and bottom left from the central region

(3A). Fig. 5.16 are the plots from regions (0B), (1B) and (2B) of the FOV using a

10×10 pixel array. It is evident from the plots that a 5×5 pixel array is too small an

ROI although it indicates that a 10×10 array maybe sufficient. There is too much

overlap between ROI regions if 15×15 pixels are used.

The plots only show the values for planes (0, 8, 16, 24, 32, 40) which are

colored red, yellow, green, cyan, blue and purple respectively. The graphs indicate

that the signal-to-noise ratio does not improve for the top most plane. This is not

surprising because the only information we have about that particular plane are

from the in-plane events alone. The central plane, plane 24, improves as more θ

projections are added until all the new information is exhausted. Projection data

above a certain θ is mostly fabricated data. The θ for which this happens depends

on the location within the FOV. Note that planes 8 and 40 are adjacent in the sense

that while plane 8 is the 9th plane from the top, plane 40 is the 8th plane from the

bottom. Thus I expect the results are similar. This is the case for all the plots.

Considering all the plots available, it is hard to justify including more pro-

jections after the 10th one. This corresponds to a projection around θ = π
2 +.5. From

here on, I will use this angle as the limit of the polar acceptance. In order to verify

this finding, I simulate a hot extended source over a cooler background. I simulate an

elliptical shell phantom with outer semi-major and semi-minor axes (3.6, 1.8)cm re-

spectively, and inner semi-major and semi-minor axes (1.8, 0.9)cm respectively. The

phantom is independent of z. The phantom is illustrated in Fig. 5.17.

A similar analysis is performed on the extended source phantom as was

done on the flood source phantom. The locations where the S/N ratio are calculated

are indicated by locations (0), (1) and (2A) and (2B). The results of the analysis

are shown in Fig. 5.18. The data are taken from a variable pixel ROI centered at

the locations cited above clockwise starting from the top right. The results again
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Figure 5.17: Extended Phantom used to verify Polar Acceptance.

indicate that there is little reason to add projections beyond π
2 + .5 radians.

5.5 Polar Sampling

Now that I have determined how far in the polar angle we will accept

events, I determine at what rate θ should be sampled. Intuitively, the higher the

rate of sampling in any variable, the more faithful the reconstruction will be. Yet

again, I need to weigh the benefit versus the cost of sampling at higher rates. The

cost of sampling at higher rates is the increase in the size of the data set and increase

in reconstruction time.

I investigate two sampling schemes in θ. The fine sampling scheme samples θ

at δθ = .025, similar to the minimum angular width in φ, δminφ = 0.02427. The other

is the coarse sampling where the angular increments are twice δminφ as in table 5.2.

Note that the polar widths at π
2 remain δθπ

2
= .075 to minimize zero-efficiency

projections bins for the in-plane data. To obtain the fine sampling data, I histogram

the events in the very same way as I did for the previous analysis. To obtain the
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Figure 5.18: Signal to noise ratio of the Flood and Phan001 phantoms. A pixel
array of variable size is used, centered at 0A, 1A, 2A and 2B, clockwise from top left.
Shown are planes 0, 8, 16, 24, 32, 40.

coarse sampling data, however, I merge adjacent angles.

We can use the same figure of merit in this analysis as we did in determining

the polar acceptance, namely the S/N ratio. However, in the previous analysis, the

number of events was not a major concern because we normalize the noise to the

signal, in this analysis, there will be systematically more events per projection bin in

the coarse sampling set than in the fine sampling set. In fact, we should expect twice

as many events in the coarse sampling set as in the fine sampling set. In order to see

if the total number of events should be a concern, I simulate data sets with 1x108

and 5x107 events. Each of these data sets will be histogrammed into two projection

sets, one using coarse polar sampling, and another using fine polar sampling. The

normalization file is the same data set used in the previous analysis.

At this point, I use d
4 sampling, i.e. the projection bins and the voxels have

linear dimension of 0.075cm. The motivation behind this choice is that I am using

the fine sampling both in θ and φ so it seems natural to use fine sampling in the
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linear dimensions as well. Using fine θ sampling and d
4 sampling effectively increases

the projection set size by a factor of eight (8). The reconstruction time increases by

nearly an order of magnitude.

There is a complication that comes with d
4 sampling that I have not ad-

dressed as of yet. Using d
2 sampling, the sampling in φ with its big angular width at

φ = 0 and π
2 , takes care of the zero-efficiency bins at these projection directions. With

d
4 , however, this scheme is insufficient. Recall that in the case of 2D reconstruction,

going to d
4 sampling left holes in the 0 and π

2 projections. These zero-efficiency bins

are a result of sinogram-bin edges being exactly on sampling points in the projection

space. The way I handled this is described initially in §4.2.2. To fill these empty bins,

half of the events in the adjacent high count bin is assigned to the empty bin. The

forced continuity of the DOI takes care of the other problem regions in projection

space.

In the present case, however, I choose to handle this differently. Instead

of allowing the DOI to take on continuous values only along the long axis of the

crystal, I allow it to populate the entire volume of the DOI bin. This means that the

interaction point takes on a random location within the [0.3×0.3×0.375] cm3 volume

of the DOI bin. We did not use this option in the 2D reconstruction primarily

because this procedure is effectively convolving the detector response with a non-

local kernel which is difficult to deconvolve from the reconstructed image. I do it

presently because it is simple. As I will show in the following section, the most

significant effect of this procedure is a broadening of the PSF in the axial direction,

i.e. the z-axis. At face value, this would seem to suggest that I could have used the

same algorithm in the 2D reconstruction.

The results of the analysis are shown in Fig. 5.19. I calculate the mean pixel

value and the corresponding standard deviation for the entire plane (there are now

96 planes). Note that the means of extreme planes are consistently underestimated

while their variance are over estimated when compared to the mid-planes. The

overestimation of the variance is understandable and is a result of the lack of events



118

20 40 60 80
0

100

200

300

400

500

600
Mean Pixel Value

Plane Number
20 40 60 80

0

200

400

600

800

1000
Pixel Value Std Dev

Plane Number
20 40 60 80

0

0.5

1

1.5
Signal/Noise Ratio

Plane Number

Flood Source 50 M Events, Fine θ Sampling

20 40 60 80
0

100

200

300

400

500

600
Mean Pixel Value

Plane Number
20 40 60 80

0

200

400

600

800

1000
Pixel Value Std Dev

Plane Number
20 40 60 80

0

0.5

1

1.5
Signal/Noise Ratio

Plane Number

Flood Source 50 M Events, Coarse θ Sampling

20 40 60 80
0

100

200

300

400

500

600
Mean Pixel Value

Plane Number
20 40 60 80

0

200

400

600

800

1000
Pixel Value Std Dev

Plane Number
20 40 60 80

0

0.5

1

1.5
Signal/Noise Ratio

Plane Number

Flood Source 100 M Events, Fine θ Sampling

20 40 60 80
0

100

200

300

400

500

600
Mean Pixel Value

Plane Number
20 40 60 80

0

200

400

600

800

1000
Pixel Value Std Dev

Plane Number
20 40 60 80

0

0.5

1

1.5
Signal/Noise Ratio

Plane Number

Flood Source 100 M Events, Coarse θ Sampling

F
igure

5.19:
Signal-to-N

oise
ratio

offlood
phantom

s
com

paring
fine

and
coarse

sam
-

pling
schem

es
in

polar
angle

θ.



119

in those planes compared to the other planes. The underestimation of the mean,

however, is puzzling. I will address this issue in the next section. For the time being,

since we compare the same planes of different images, the results that we obtain from

these analysis should be valid.

Comparing the S/N ratio plots in Fig. 5.19, between it appears that for a

constant number of events, the S/N ratio analysis does not distinguish between the

two polar sampling schemes. The increase in the signal between planes reconstructed

using coarse sampling versus fine sampling is consistent with the number of events

increasing by a factor of 2. The noise appears to increase as the signal does, resulting

in very little change in the S/N ratio.

5.5.1 Resolution Test

Because the previous analysis failed to distinguish between the two polar

sampling schemes, I perform another analysis to attempt to determine whether the

benefit of fine polar sampling outweighs the doubling of the data set. For the second

analysis, I use the resolution of the PSF as the figure of merit. I simulate equal

intensity point sources at various locations in the FOV. The xy locations are the

same as those simulated in §4.2.3. The z values of the point sources are z = (-

3.45, -2.85, -2.25, -1.65, -1.05, -0.45, 0.15, 0.75, 1.35, 1.95, 2.55, 3.15), i.e. they are

located in plane 2 and every 8th plane after that until plane 90. The point sources

are “bathed” in a low background flood source. A total of 50 M annihilations are

evenly distributed among the 84 point sources, giving each source approximately .6

M annihilations. Another 50 M annihilations are distributed evenly in the warm

bath. Fig. 5.20 shows the middle plane of the reconstructed image.

In order to isolate the point sources, I use a threshold on the image. I

calculate the mean and the standard deviation of the voxel values in the entire image

and perform the analysis that I will describe for voxels that are 3, 4, 5, 6, and 7σ

from the mean. Once the threshold has been applied to the image, I begin to search
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for voxels with non-zero values, top plane first, starting from the top left corner of

the plane. When I find a non-zero voxel, I search for all the contiguous non-zero

voxels. If there are more than four voxels in this set, I define this as a reconstructed

point source. I do this until I’ve carved out all the point sources from the image. At

this point, I have the voxels that comprise each reconstructed point source. Fig. 5.21

shows typical “blobs” carved out by this process. With each of these point sources, I

sum the voxel values in two indexes, leaving the integrated voxel intensity along one

axis corresponding to the third index. This voxel intensity profile in this remaining

axis is super-sampled by 4, linearly interpolating between the non-zero sampling

points. I then find the maximum and the two points on either side of the maximum

at which the value of the profile drops to below half of this maximum. I define the

FWHM as the distance between these two points.

Fig. 5.22 shows the result of the analysis. I show the results for two values of

the threshold. The top left plot shows the results when the threshold equals 5σ. The

x-axis is the point source index. The point sources are numbered such that groups

of seven belong in the same plane, i.e. the first seven indexes correspond to the

point sources in plane 2, the second seven are in plane 10, etc. Notice the regularity

in the resolution pattern as the index number increases. The lowest points in the

groups of seven correspond to point sources at the center of the tomograph. There

are four curves in the plot. The results of the current analysis are in red and yellow,

corresponding to the fine and coarse polar-sampling reconstruction respectively. The

magenta curve in the plot immediately below is the absolute difference between these

two curves. The conclusion is that on average, with respect to Rx, the width of the

PSF in x, the difference between fine and coarse sampling approximately less than

.375mm = d
8 . This is equivalent to a null result, i.e. this analysis does not distinguish

between fine and coarse polar sampling. In fact, the same can be said for Ry and

perhaps even Rz, although in the case of Rz, the fine sampling reconstruction has a

systematically lower value.

This null result prompted me to see if this was a consequence of the fact
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that I allow the interaction point to be a random location within the entire DOI

volume. Recall that when I reconstructed images in R2, the interaction point was

a random location along the main axis of the crystal within the DOI volume. The

second pair of curves, the green and the blue, in the top left plot are the PSF of the

reconstructed point sources when the interaction point is only allowed to be along

the main axis of the crystal. The cyan curve in the plot immediately below is the

absolute difference between these two new curves. The conclusion is the same. We

are sacrificing neither resolution nor signal-to-noise ratio by coarsely sampling the

polar angle. Increasing the threshold to 7σ does not change the conclusion.

5.5.2 Normalization Revisited

The overestimation of the noise in the top and bottom planes is under-

standable. The underestimation of the mean voxel value, however, is puzzling. The

top left plot in Fig. 5.23 is the mean voxel value of the reconstruction of the ideal

noiseless data, scaled such that the mean voxel value of the 48th plane is 1. The x

axis of the plot corresponds to the plane index. Notice that the plot is essentially

flat across the different planes. The slight decrease in value at the extreme planes

can be attributed to the overshoot of the FFT. Recall that we are reconstructing an

object that has finite support with sharp edges, i.e. the phantom has a discontinuity

from finite value to 0 as you cross the edges of the FOV.

One possible explanation for the underestimation of the mean value at the

outer planes is that I did not take into consideration the statistics of the individual

voxels in the plane, i.e. I calculated the unweighted mean of the voxel values. If the

statistics of each individual voxel are indeed different enough from one another to

cause this underestimation, then I can try to see if I can modify the ideal noiseless

data to reconstruct into an image that underestimates the outer planes as well. To

see if this is indeed the case, I add Poisson noise to the ideal data and reconstruct.

I reconstruct three images, one in which the ideal data has been scaled such that it
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Figure 5.23: Comparison of ideal means.

is equivalent to 109 events, one with 108, and another with 107.

The right-hand plots in Fig. 5.23 show the mean voxel values of the images

with 109 events (top), 108 events (middle) and 107 events (bottom). These data

sets corresponds to events with the less, equal, and more noise when compared to

the 100M-event data set respectively. Note that while the increase in the noise

characteristics of the image is readily apparent (when compared to that of noiseless

data), I cannot see any underestimation in the mean voxel values of the outer planes.

Another possibility is that the normalization factor that I use is incorrect.

Recall that the normalization factor is determined by the bin-by-bin ratio of the line

integral of the FOV to a high-count flood data set, i.e. ni = ai
fi

, where ai is the line

integral of a solid box with the dimensions of the FOV and fi is the number of events

in bin i detected from a high activity flood source. This corresponds to multiplying

the projection data by 1
E[fi]

, where E[∗] is the expectation operator, when in fact, I

should multiply by E[ 1
fi

]. Fig. 5.24 shows the ratio of E[ 1
λi

] and 1
E[λi]

as a function

of the expected number of events. λ has Poisson statistics. Note that the ratio tends
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if λi is Poisson distributed.

to 1 for increasing values of E[λi].

Application of the correction factor improves the uniformity of the mean

voxel value of the planes. Fig. 5.25 shows the improvement in the mean voxel value of

each plane if the normalization is corrected for the bias. However, the improvement

is not complete. This reconstruction, as in the previous reconstructions, uses a high-

count flood data set corresponding to 8×108 annihilations. This suggests that I need

to increase the number of events in the high-count flood source. Fig. 5.26 shows the

improvement in the uniformity of the mean voxel value as more events are used for

the calculation of the normalization factors. It appears that 3.5×109 annihilations

are a sufficient number of events for the normalization file.

The lack of events in the normalization file does not change the results of the

previous sampling study. In the first place, I compare corresponding planes between

reconstructions that used data normalized with the same normalization factors. The

signal-to-noise ratio changes by a few percent but the overall conclusion remains

that the gains brought about by finely sampling the polar angle does not justify the
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doubling of the data set and doubling of the reconstruction time.

5.6 A Sample Reconstruction

To get a flavor of the PEM reconstruction with the parameters that I have

just determined, I reconstruct the data from the elliptical extended source phantom

described in Fig. 5.17 using the coarse sampling scheme. I simulate 5×107 annihi-

lations both in the colder background and in the hotter ellipse, and the data file is

normalized using the normalization file with 3.5×109 events. Fig. 5.27 shows the

even planes of the top half of the reconstructed FOV. The images are scaled to show

the relative intensities of the regions. The results from §5.5.1 indicates that the res-

olution is expected to be isotropic. The present reconstructed images indicate that

the noise is not. Note that the ellipse is difficult to discern in Plane 0, and while I

can identify the ellipse in Plane 2, the noise blurs its boundary.

To quantify the accuracy of the reconstruction, I calculate the activity ratio

between the hot phantom and the warm background. The ratio of the areas of the

source and the background is 15.3 : 57.6 = 0.265. Thus, the expected ratio of the

mean voxel value between the source and background is 1−0.265
57.6−15.3 : 1+0.265

15.3 = 1 : 4.76.

Fig. 5.28 shows the mean voxel values in the phantom and in the background for

the different planes in the FOV. While the mean voxel value within the phantom

is uniform, the colder background suffers from the familiar underestimation at the

extreme planes. The result is that the ratio is artificially higher in those planes.

5.7 Realistic Camera Geometry

Now that I have extended the irregular sampling reconstruction to the ideal

camera geometry, I begin to include real-world effects such as the acollinearity of the

photons and Compton Scattering in the detector modules. I also include photon

sharing in the detector modules and calculate the DOI by taking the ratio of the
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Figure 5.28: Plane statistics of reconstructed extended ellipse phantom.

signal in the PD to the sum of the signals in both the PD and PMT. Finally, I

include gaps between detector modules in anticipation of the packing limitations of

the camera.

Inclusion of gaps between the detector results in a loss of approximately 1
3

of the events. The gaps reduce the active surface of a detector module to (8
9)2 = 79%.

Two modules in coincidence is reduced by approximately 62%. If the photofraction

of LSO at 511 keV were 100%, with the attenuation constant were 1.2 cm, the detec-

tion efficiency of the PEM detector is 28%. (Recall that the efficiency of the PEM

camera if the modules had black crystals is 39% (Table 5.1)). I used these condi-

tions to simulate the Ideal Detector. Thus, with the drop in geometric acceptance, I

anticipate a detection efficiency of 19%.

Inclusion of Compton Scatter in the detector modules means that I will

need to use energy cuts in determining which coincidence events to keep. Fig. 5.30

shows the energy spectrum of the detected events for four operating conditions for

the camera. Light statistics are modeled as Gaussian with a standard deviation
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given by the square root of the number of photons generated. To simulate bad light

output, I multiply this standard deviation by 30. To simulate a noisy PD, additional

Gaussian noise is added in quadrature. I simulate the worst case shown here, which

corresponds to approximately a 21% FWHM energy resolution. This is consistent

with the resolution we expect from the camera [66].

The energy window used in conventional PET scanners is 350 keV to 650

keV. I do not put a high-energy threshold on the energy of the event. However, for

the lower energy threshold, I put a cut at 3500 ADC counts, corresponding to 350

keV, to keep 70% of the singles events and accept 49% of all detected events. Thus

the overall detection efficiency of the simulated detector is 9%.

So far, whenever the DOI is needed to be discretized, I have allowed the DOI

to take on a random value within “DOI bins” that are 3.75 mm long, corresponding to

dividing the 30 mm crystals into 8 DOI bins. With the modeling of a more realistic

energy resolution in the PD and the PMT, a DOI resolution that constrains the

interaction point to 3.75 mm is too optimistic. Fig. 5.32 shows the absolute difference
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between the true DOI and that which is calculated using the depth estimator Γ.

Note that as the energy resolution worsens, the DOI resolution worsens as well. In

particular, since I will be simulating the detector with an energy resolution of 21%,

I will use DOI bins that are 5 mm in length instead.

The modeling of a more realistic energy resolution also has another conse-

quence in determining the DOI that I briefly alluded to in §4.3. The depth estimator

Γ from which the DOI is calculated can take on values outside its bounds had the

detectors been perfect. Fig. 5.32(A) shows the distribution of Γ for the module with

21% energy resolution. (B) shows the calculated DOI. Note that 13% of the events

will be assigned a DOI that is outside the crystal. In these cases, the event is assigned

to the closest end of the crystal. (C) shows the distribution of the DOI after the

redefinition of the depth in cases where Γ is outside its ideal boundaries.

Fig. 5.33 shows the projection data for 4.6×109 coincidences from a flood

source. Note that the gaps between the modules are evident by the large contiguous
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Figure 5.32: Depth estimator Γ and redistributed DOI.

unsampled regions of the projection planes. In addition to the missing data due to

the gaps between modules, the data also shows the effect of the requirement that

the interaction point be along the long axis of the crystal. This is evidenced by the

local non-uniformity of the data in the off-plane projections. This problem will be

partially eliminated by the normalization. However, there are off-plane projection

bins that are not sampled. I treat these bins like the truncated data. I estimate the

data in these bins from a scaled forward projection of the initial low-statistics 2D

reconstruction of the in-plane data. This was not possible in the 2D case because

there is no redundant information in 2D.

5.7.1 Reconstructing Initial 2D Estimate

The reconstruction that I did in Chapter 4 was in anticipation of the prob-

lems that the 3D data contains. The initial 2D estimate that I will use for the 3DRP

reconstruction will come from the projection planes with θ = π
2 , i.e. the set of pro-

jections in the first row of Fig. 5.33. This set of data suffers from the missing gaps
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Figure 5.34: Mashed Projections. These projections are the sum of the θ = π
2 and

the first off-plane projections. They have φs equal to 0, 0.657440 and 1.142807 in
the top row and 1.780369, 2.265736 and 2.751104 in the bottom row.

and the requirement that the interaction point be along the long axis of the crystal.

The gap problem is clearly seen in the projection iT10iP0, corresponding to the 10th

projection in θ, i.e. θ = π
2 , and the 0th projection in φ, i.e. φ = 0. The φ values of

the other projections are given in Tables 5.3 and 5.4. The requirement that the in-

teraction point be defined along the long axis of the crystal results in the alternating

bright and dark bands in the rest of the in-plane projections. This basically means

that some of the planes are defined to have a lower efficiency that will need to be

corrected.

The reconstruction procedure used in §4.3.2 was designed to take care of

the vertical gaps in the projection planes. Recall that the 2D data is essentially the

column sum of these projection planes. The redistribution procedure described in

§4.3.1 takes care of the vertical gaps but it will not remedy the horizontal gaps.

Instead of doing a 2D version of the redistribution procedure, I choose to

perform angular mashing to remedy the horizontal gap problem. Mashing is the
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Figure 5.35: Redistributed Projections.

combination of projections taken at different angles and is used, for instance, with

the LBL PET600 camera [77]. The primary reason for doing the mashing, instead

of a 2D redistribution, is that redistribution is essentially a local smoothing of the

data. In 2D, nearest neighbor smoothing means that there are horizontal ZEB which

will not be filled because all its adjacent bins have are also ZEBs. This implies that

there will be planes that will not be populated. The forward projected value in these

planes will remain zero and hence they will never be filled using the IRR algorithm.

For the mash, I combine the in-plane projections and the first off-plane

projections prior to and after θ = π
2 . Fig. 5.34 shows the first row of Fig. 5.33

post-mashing. At this point, the redistribution procedure of §4.3.1 can be used to

take care of the horizontal ZEBs. Fig. 5.35 shows the same set of projections post-

redistribution. Note that the redistribution primarily affects the φ = 0, π2 projections.

The φ = π
2 is not shown in this figure. The 2D normalization file may now be

calculated as previously described.

At this point, I am essentially back in the 2D reconstruction mode. I follow
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Figure 5.36: Normalized Projections.

the algorithm described in Chapter 4 in order to reconstruct the initial low-statistics

estimate of the object. I use the IRR algorithm with the positivity constraint as pre-

scribed and iterate until the object no longer changes. As an example, I reconstruct

the 2D estimate for a 6.8×108 annihilations data set from a flood phantom using a

7.8×109 annihilation data set as the high-statistics data set to calculate the normal-

ization file. Figures 5.36 and 5.37 show the normalized and filled projections after 20

iterations of IRR. The number of iterations before the projections cease to change

is approximately 5. Fig. 5.38 shows the image sum of the squared pixel differences

between the first iteration and the subsequent iterations.

In an attempt to increase the rate of convergence, I filled the ZEBs by using

linear interpolation between the finite efficiency bins. The convergence rate did not

change. It still took approximately 5 iterations before the projection data converged.

The 20th iteration was the same whether the projection data was initially filled in

using linear interpolation or not, suggesting that there is no need to do an initial

estimate before performing the IRR algorithm.
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Figure 5.37: Filled Projections.
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Figure 5.39: Mean voxel value and standard deviation of reconstructed flood source
after the 5th iteration of IRR.

Fig. 5.40 shows a few planes of the reconstructed flood source after the 5th

iteration while Fig. 5.39 shows the mean and standard deviation of the voxel values

in each plane. The mean voxel value in the planes which are missing due to the

gaps between modules are slightly underestimated. This is the same phenomenon

that I have encountered with the ideal camera where the mean voxel values of the

extreme planes are underestimated. Note that with the planes in the gaps exhibit

characteristics of the previous extreme planes. Voxels in these planes have larger

fluctuations from the mean. The overall large standard deviations compared to

the mean values in all the planes are an evidence of the low number of events in

the in-plane projections. These initial reconstructions have signal-to-noise ratios of

approximately 0.5.

The “sawtooth” behavior of the variance is the combined result of a) defin-

ing the interaction point to lie on the long axis of the crystal and b) mashing the first

off-plane projections with the in-plane projections. Defining the interaction point to
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lie on the long axis of the crystal should leave three of every four planes in the in-

plane projection unpopulated. However, because the relatively large angular width

of the in-plane projection (0.075 rad), annihilation events where both 511 keV pho-

tons interact deep into the crystals can have chords with non-zero θs small enough to

be histogrammed in the in-plane projection. Thus, instead of having three of every

four planes unpopulated, the first of every four planes is highly populated, the third

is “fractionally” populated, and the second and fourth planes remain unpopulated.

By mashing the first off-plane events with the in-plane events, these unpopulated

bins become populated with fewer events than they really ought to have. However,

this lower effective efficiency can be corrected by normalizing these bins which would

have been unnormalizable without the mash. Normalizing the mashed data removes

the “sawtooth” variation in the 0th moment, i.e. the mean, of the data, but not the

variance.

5.7.2 Final 3D Reconstruction

The final reconstruction essentially follows the procedure already described

in previous sections. The initial 2D reconstructed image is forward projected into a

complete set of projections of the object to serve as an estimate for the truncated

projections. However, since I have estimates of the complete data, I can redefine

the ZEBs as truncated projection bins as well and treat them as any of the truly

truncated projection bins. This leaves the original data as unmolested as possible.

There is yet another issue. Previously, in order to get the scale between

the projected estimate and the true data, I summed over all the projection bins in

the θ = π
2 directions and compared them between the two projection sets. I did this

between the normalized data and the projected estimate. I could do this because the

in-plane events were a complete set, i.e. there were no missing information. In the

limit of an infinite number of events, the normalized in-plane projections were the

true projections of the object. This is no longer the case. In fact, normalizing the
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data removes events from the high-efficiency projection bins without adding events

to the ZEBs. This means that the number of events is not preserved, or that the

normalized projections is no longer a true representation of the object.

In order to get around this issue, I “denormalize” the projected estimate

with the same normalization set that I use for the true data. This would put the

estimate in the same footing with the unnormalized data so that the total number

of events in the data is the same as in the projected estimate. Once the scale is

calculated, it is applied to the projected estimate. The truncated projection bins

in the data are subsequently filled. The total fraction of bins that are filled either

because of truncation or ZEBs is shown in Fig. 5.41. This figure should be compared

to Fig. 5.6 which is the fraction of truncated bins in each projection. In particular,

the θ = π
2 projection has a higher fraction of filled bins than either the one before or

after it. These are the result of the degenerate chords in the in-plane projections that

are not present in the off-plane projections. Note that the same happens in the φ = 0

and π
2 projections. Once these projection bins are filled, the image is reconstructed

according to the scheme discussed in the previous sections. The 3D reconstructed

image of the flood will be shown in the following chapter.

5.8 Summary of 3D Reconstruction Procedures

The following is a list of the procedures that need to be done in order to

successfully reconstruct 3D images using data from the PEM camera. Again, as in

§4.4, I do not assume a specific aspect ratio for the PEM camera.

• Determine the angular widths of the projections near θ = π
2 . There maybe

more than one projection for which a larger angular bin width is necessary to

minimize ZEBs. If the aspect ratio of the camera is the same as I describe in

this dissertation, then the in-plane and the first off-plane projections (there is

one prior to and after θ = π
2 ) need 0.075 rad angular bin widths. The results

of §5.5 indicate that δθ = 0.05 rad may be used for the remaining off-plane
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projections.

• Calculate normalization values for the reconstruction of the initial estimate of

the object. Note that the exact same procedures that will be applied to the

3D projection data in order to get a 2D data set will need to be done to the

high-statistics data set from which the normalization values will be calculated.

For the purposes of this dissertation, I have used Monte Carlo data from a

flood source as my high statistics data set. At the time of the writing of this

dissertation, the preferred method of obtaining high statistics data for the real

camera is to use a plane source within the FOV. The plane will contain the

longest diagonal in the parallelepiped defined by the FOV.

• Calculate the normalization values for the 3D reconstruction of the final 3D

object. Because all ZEBs (truncated projection bins, those that are due to

the module gaps, and those that are due to the assignment of the interaction

point to lie along the crystal axis) will be treated on the same footing, the

3D normalization values may be directly calculated from the ratio of the high

statistics normalization phantom data and the phantom’s known projections.

• Label all bins with normalization values above a threshold as ZEBs. The trehsh-

old value may be determined by the procedure described in §5.3. Normalize

the 3D projection data.

• Mash the in-plane data with the first off-plane projections until the ZEBs in the

module gaps are populated. In this dissertation, the first off-plane projections

were sufficient.

• Perform nearest- neighbor smoothing in each plane and reconstruct the 2D

image in each plane as described in §4.4. Simulations indicate that 5 iterations

of the IRR algorithm is sufficient.
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• Forward project the initial estimate into the polar projection angles that have

δθ = 0.05. For the polar angles near θ = π
2 that have δθ > .05, let δθ′i = δθi

M

where M is the smallest positive integer that will satisfy δθ′i < δθi. Forward

project the initial estimate into the new polar projection angles θ′ij = θi− δθi
2 +

(j + 1
2)δθ′i, j = 0..(M − 1). Note that the projected data set is therefore larger

than the true data set.

• Apply the inverse normalization to the projected data so that it may be scaled

to the total number of events in the true data. Apply the calculated scaling

factor to the projected data.

• Replace every non-ZEB projection bin value in the projected data set with the

value of the corresponding projection bin in the true data set. Note that there

are no true data that will correspond to the new projection angles θ′ij , i.e. these

forward projected data will be used in place of the true data near θ = π
2 .

• Use Colsher’s algorithm to reconstruct the 3D object with the completed data

set. Note that the projection data near θ = π
2 will need to be multiplied further

by a factor δθ′i
0.05 < 1. Recall that 0.05 is the nominal polar angular bin width.



146

Chapter 6

Reconstructed Images

To show the anticipated performance of both the camera and the recon-

struction algorithms that I have discussed in this thesis, I now present reconstructed

images of several different simulated phantoms. The simulation and reconstruction

parameters are those discussed in previous chapters. In particular, the FOV has 104

planes in z, 148 slices in x and 88 slices in y. Each voxel is 0.075 cm on a side.

6.1 Flood Phantom

The first phantom that I reconstructed is again the flood phantom. Fig. 6.2

is a 3D reconstruction of a flood phantom representing 4×108 annihilations, which

translates to a 36×106 event data set. The images should be compared to those in

Fig. 5.40 which are the 2D reconstructions after the 5th iteration of IRR. The image

statistics are shown in Fig. 6.3. Again, these plots should be compared to those in

Fig. 5.39 which show the statistics of the 2D flood source reconstruction after the

5th iteration of IRR.

The plot of the mean voxel values, if compared to the 2D reconstruction, is

more characteristic of the reconstructed image for the ideal camera, slightly underes-

timated only at the extreme planes by a little less than 3%. Some features due to the
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module gaps, such as the variation of the mean values in the gaps, are still apparent

but are lower in relative magnitude (by up to a factor or 50%) if compared to the

2D reconstruction. The noise in the gaps are also substantially reduced while the

signal-to-noise ratio improves by as much as a factor of three in the middle planes.

As I discussed in §5.7.1, the “sawtooth” behavior of the standard devia-

tion is the combined result of a) defining the interaction point to lie on the long

axis of the crystal and b) mashing the first off-plane projections with the in-plane

projections. Including the other off-plane projections in the reconstruction reduces

this effect tremendously but does not eliminate it. This result highlights the first

weakness of the algorithms described in this dissertation, i.e. the noise structure

of the reconstructed images will not be axially uniform. While it is true that the

variation in the noise structure is small, it is nevertheless present.

6.2 Point Sources

6.2.1 Profiles Phantom

In order to measure the resolution of the camera, I simulate point sources

along the borders of the upper top-right octant of the FOV and along the diagonal

of the middle and the top planes. The locations and number designations of the

point sources in the middle and top planes are shown in Fig. 6.4 (A). Three planes

between the top and middle planes, namely planes 63, 75 and 87, have point sources

at the corners of the octant. These sources represent a high-count acquisition of

approximately 1.6×106 detected events per point source for 62 point sources (25 in

the middle and top planes and four on three planes in between).

Figs. 6.5, 6.7 and 6.8 show the middle plane, the in-between planes, and

the top plane of the reconstructed FOV respectively. Figs. 6.6 and 6.9 show the

profiles through the point sources in the middle and top planes. “Profiles along Top

x” means that the profile is the x profile of the point sources along the top edge of
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the camera. Likewise, “Profiles along Right y” means that the profile is the y profile

of the point sources along the right edge of the camera.

To get the FWHM of these peaks, I fit them to one and two Gaussian

models, taking the results from the better fit. If neither model is acceptable, the

FWHM is calculated by up-sampling the distribution by 4 samples, linearly inter-

polating between the known samples, and looking for the two points to the left and

right of the maximum value at which the distribution falls by a factor of two. The

distance between these two points is reported as the FWHM. Tables 6.1, 6.2, and

6.3 summarize the results.

Generally, the reconstructed point sources can be easily discerned, exhibit-

ing peak-to-valley ratios of up to 10:1. This is particularly true for the middle planes

as can be seen in Fig. 6.5. The FWHM values of these reconstructed point sources

are within the crystal width of 3.0 mm throughout the entire volume of the detector.

In fact, the resolution is particularly good for a large fraction of the FOV, degrad-

ing to 3.0 mm only in regions close to the edges and corners, and very near to the

openings of the camera.

The point sources, however, exhibit “star-like” artifacts that radiate in what

I have called “Problem Regions” in the angular variable φ, i.e. φ = 0, π2 . Again, these

are primarily due to the lower angular-sampling rate in these directions. Comparing

these reconstructed point sources with those that were reconstructed without 3D

information, i.e. Fig. 4.15, it is curious that the “star-artifact” is not present in the

2D images. After many attempts trying to find out an explanation for the difference,

it turns out that the difference lies in the display color scales that I used. In the

former images, I used “grayscale” which corrects for the nonlinearities of human

vision. This means that the gradations of the scale are finer in the middle of the

scale than near the ends of the scale. On the other hand, I used the “linear-color”

scale for the current images, i.e. the gradations in this scale is independent of the

value in the scale. The 5%-10% artifacts are also present in the 2D image in spite.

It is, however, consoling that the artifacts do not affect the FWHM resolution of the
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φ = 0 

Figure 6.1: Pictorial representation of methods of splitting events in the problematic
projection angles in polar angle φ.

images and only slightly affect the isotropy of the full-width-at-tenth-max (FWTM) 1

In an attempt to minimize the extent of the artifacts, I studied an alterna-

tive way of redistributing the events that have polar angles near the problem regions.

In particular, the method I have used, thus far, divides the events equally into all

the angular bins that the wide and problematic angular bin is split. The effect of

this is a step-wise discontinuity in the number of events. Figs. 6.1 (A) and (B) shows

this method pictorially. Instead, I linearly interpolated between the the centers of

these wide bins to generate a linear-discontinuous distribution. Figs. 6.1 (A) and (C)

shows this method pictorially. The changes in the images that I observed were not

significant. These artifacts represent the second weakness of the algorithms described

in this dissertation.
1The FWTM is the width at which a distribution of a tenth of its maximum value.
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6.2.2 Noise Phantom

In order to compare the 2D reconstructions in §4 with the current 3D re-

construction procedures, I simulated point sources at the same locations as those in

§4.2.3 separated in z by 0.6 cm, i.e. two crystals or 8 reconstruction planes. The im-

ages represent 2×108 annihilations or 2×107 events in 12× 7 = 84 point sources, i.e.

24×105 events per point source. Figs. 6.10 and 6.11 show the reconstructed point

sources at the center and near the top of the FOV, respectively. The point sources

are well reconstructed. To characterize these point sources, I took their “volumetric

profiles” in the x,y, and z axes. For each point source, I summed the voxels in two

axes and calculated the FWHM of the resulting distribution in the third axis. Note

that this is not a measure of the resolution of the point source, but rather a measure

of the extent of the total activity in the point source. Table 6.4 shows the FWHM

of the “volumetric profiles.” A heading “x” means that the point source was inte-

grated in y and z. I fitted the distributions to one and two Gaussian functions, and

I took the results from the better fit. If neither models are acceptable, the FWHM

is calculated by the up-sampling technique. Fig. 6.4(B) identifies the point sources

in the table. Plane 53 is near the center plane while plane 93 is near the top of the

FOV. All values are ±0.75 mm.

This study is similar to performing a Region-of-Interest study on the re-

constructed point sources. Assuming a Gaussian PSF, the results indicate that the

PEM camera is likely to obtain reconstructed point sources with 86% 2 of integrated

activity will be contained within approximately 2.5 mm of the location of the source.

The average 3D FWHM of the point sources throughout the FOV is 2.5 mm. Al-

though I do not present quantitative results in this dissertation, it is encouraging

that using the reconstruction procedures detailed in this dissertation, simulations

show the PEM camera will be able to confine point source activity within less than

a crystal width.

2The ratio of the integral
∫ ro

0
dr r2 exp(−r2

2σ2 ) evaluated for ro = FWHM and ro = ∞ is 0.8627.
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In order to characterize the noise in the reconstructed point sources, I gen-

erated five independent data sets which have only 5×107 annihilations. The variation

in the peak values and integrated activity of the reconstructed sources should give a

measure of the noise in the reconstruction. Table 6.5 summarizes the results of the

study. The variation in the integrated activity and peak values of the point sources

are between 0%-3%.

6.2.3 Derenzo-like Point Sources

The Derenzo Phantom is a phantom designed to visually assess the resolving

power of a camera. Cylindrical holes drilled through a block of material, often

plexi glass, are filled with radioactivity and scanned with the camera being tested.

Several regions have cylinders with different diameter holes whose spacing equal four

times the diameter. Instead of simulating rods, I simulated point sources that were

organized in a similar manner to a Derenzo Phantom. I filled the top right quadrant

of the central plane with point sources that were 1.0 mm in diameter with 4.0 mm

center-to-center spacing. The top left, bottom left and bottom right quadrants were

filled with point sources that had 1.25 mm, 1.5 mm, and 2.0 mm diameter point

sources respectively. This pattern was repeated every 8.0 mm in z. Figs. 6.12 and

6.13 show the planes near the center and top of the FOV respectively. Note that in

the middle plane of the FOV, the point sources can be easily distinguished from each

other, even the small sources that are some distance from the center of the plane.

However, the same sources are difficult to resolve near the top of the camera. Only

the larger sources close to the center of the plane are easily recognizable.

The modified Derenzo Phantom that I used is a good tool to evaluate the

performance of the reconstruction algorithms that I have discussed. It shows the

variation in the quality of the reconstructed point sources throughout the entire FOV.

Again, it is encouraging to consider that using the algorithms I have discussed, the

PEM camera will be able to detect aggregations of radioactivity as small as 3.00 mm,
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regardless of the location in the FOV. Current PET systems that are optimized for

breast cancer imaging are able to image structures of the order of 1 cm in size.

6.3 Extended Source Phantoms

6.3.1 Defrise Phantom

The Defrise Phantom is a phantom that is composed of alternating planes

of constant activity and no activity. It is designed to investigate how activity can

“leak” from one plane to another in 3D reconstruction. This leakage is common

in 3D reconstruction algorithms and usually increases as one comes closer to the

edge of the FOV. I simulated such a phantom in the lower half of the PEM FOV.

The lower top-left, lower bottom-left and the lower bottom-right octants are divided

into twenty-four 0.15 cm planes, twelve 0.30 cm planes, and six 0.60 cm planes of

alternating constant and zero activity respectively. Figs. 6.14 and 6.15 are the x and

y slices of the reconstructed image respectively. Both images display planes from the

most negative x and y values, i.e. “x Slice 1” is the left most x slice and “y Slice 1”

is the bottom most y slice. Fig. 6.16 shows the mean voxel value and voxel standard

deviation of a 3×3 voxel ROI located at the center of each quadrant in each plane.

Fig. 6.17 shows the same information but for a 15×15 voxel ROI. The individual

planes can be seen in the quadrants in which the planes with activity are 0.3 cm

and 0.6 cm thick. The half-crystal-thick planes cannot be discerned. This is not too

surprising. The bars of a true Defrise phantom are much coarser than the resolution

of the camera.

6.3.2 Spheres and Ellipsoids

The final phantom that I simulated are extended sources of spheres and

ellipsoids. While it is true that because both the acquisition and reconstruction

processes are linear, we need only to simulate point sources in order to characterize
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the camera. But its always fun to see how well you can see other objects in it! There

are four objects in the FOV in this phantom.

• A sphere of R = 0.75 cm is located near the central plane of the FOV and lies

along the x axis displaced by a small distance from the y axis.

• An ellipsoid is located at the center of the xy plane but displaced by a quarter

of the camera’s axial extent in −z. Its principal axes have dimensions (2.75,

1.0, 1.0) cm.

• Another ellipsoid is located near the top quarter of the FOV, oriented along

the y axis but displaced from it to the right. Its principal axes have dimensions

(1.0, 3.0, 1.0) cm.

• Finally, a long ellipsoid extending through the entire axial extent of the camera

is located on the y axis displaced by a small distance from the x axis. Its

principal axes have dimensions (0.75, 0.75, 3.0) cm.

The ellipsoids have twice as many annihilations as there are in the sphere so that with

volumes equal to (1.7671, 11.5192, 12.5664, 7.0686) cm3 respectively3, their relative

activities are expected to be 1.0000 : 0.3068 : 0.2812 : 0.5000. All the objects are

reconstructed well with 109 annihilations or 9×107 detected events. The mean voxel

values in each of these objects are (1.1396, 0.3591, 0.3359, 0.5711)x105 respectively,

i.e. the measured relative activites are 1.0000 : 0.3151 : 0.2948 : 0.5011. I performed

the same reconstruction with half this number of events and the objects were still

clearly reconstructed.

The number of events that I simulated is consistent with the anticipated

number of events that will be detected during a PEM scan. The anticipated FDG

dose is 1.0 mCi which is equivalent to 3.7 × 107 Bq. The ratio of the volume of the

FOV to the total volume of a typical 140 lbs. human female is approximately 1%,
3The volume of an ellipsoid is 4

3
πr1r2r3.
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and thus, some 3.7 × 105 annihilations per second can be expected to occur within

the PEM camera. For a 20 minute scan, this translates to approximately 0.45× 109

annihilations, consistent with the number of events that I have generated.
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x y z

Plane 51 Source 1 1.54 ±0.75 mm 1.56 mm 1.54 mm
Plane 51 Source 2 1.50 1.59 1.59
Plane 51 Source 3 2.05 2.07 2.05
Plane 51 Source 4 2.54 2.33 2.52
Plane 51 Source 5 2.63 2.43 2.43
Plane 51 Source 6 2.90 2.09 2.43
Plane 51 Source 7 2.62 2.25 2.48
Plane 51 Source 8 2.63 2.31 2.40
Plane 51 Source 9 2.80 2.40 2.63
Plane 51 Source 10 2.72 3.11 2.57
Plane 51 Source 11 3.01 3.21 2.81
Plane 51 Source 12 2.75 2.73 2.84
Plane 51 Source 13 2.20 3.16 2.25
Plane 51 Source 14 2.40 3.17 2.26
Plane 51 Source 15 — — —
Plane 51 Source 16 1.53 2.99 2.15
Plane 51 Source 17 1.49 2.83 2.35
Plane 51 Source 18 1.52 2.25 1.52
Plane 51 Source 19 1.59 2.09 1.51
Plane 51 Source 20 1.51 1.92 2.06
Plane 51 Source 21 1.59 1.67 1.68
Plane 51 Source 22 2.09 1.34 1.83
Plane 51 Source 23 2.14 2.62 2.24
Plane 51 Source 24 2.54 2.53 2.43
Plane 51 Source 25 2.83 3.05 2.53

Table 6.1: FWHM of point sources in the middle plane of the FOV in Profiles
Phantom.
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x y z

Plane 63 Source 1 1.53 ±0.75 mm 1.56 mm 1.99 mm
Plane 63 Source 2 3.03 1.84 1.97
Plane 63 Source 3 — — —
Plane 63 Source 4 2.15 2.96 2.45
Plane 75 Source 1 1.59 1.61 2.06
Plane 75 Source 2 2.91 2.19 2.57
Plane 75 Source 3 — — —
Plane 75 Source 4 1.73 2.81 2.43
Plane 87 Source 1 1.65 1.86 1.73
Plane 87 Source 2 3.04 2.22 2.61
Plane 87 Source 3 — — —
Plane 87 Source 4 2.51 2.90 2.49

Table 6.2: FWHM of point sources in planes between the middle and top planes of
Profiles Phantom.
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x y z

Plane 99 Source 1 1.91 ±0.75 mm 2.55 mm 2.05 mm
Plane 99 Source 2 2.65 2.43 2.65
Plane 99 Source 3 2.84 2.81 2.80
Plane 99 Source 4 2.86 2.87 2.75
Plane 99 Source 5 3.01 2.91 2.90
Plane 99 Source 6 3.21 2.72 2.64
Plane 99 Source 8 3.11 2.69 2.78
Plane 99 Source 9 3.09 2.73 2.81
Plane 99 Source 10 3.21 2.66 2.93
Plane 99 Source 11 3.18 2.68 3.21
Plane 99 Source 12 2.85 2.93 3.01
Plane 99 Source 13 2.71 2.86 2.85
Plane 99 Source 14 2.63 2.72 2.72
Plane 99 Source 15 — — —
Plane 99 Source 16 2.01 2.85 2.41
Plane 99 Source 17 2.13 2.79 2.33
Plane 99 Source 18 2.22 2.55 2.27
Plane 99 Source 19 2.31 2.31 2.15
Plane 99 Source 20 2.55 2.25 2.09
Plane 99 Source 21 2.09 2.09 2.20
Plane 99 Source 22 2.42 2.41 2.41
Plane 99 Source 23 2.45 2.53 2.45
Plane 99 Source 24 2.62 2.75 2.53
Plane 99 Source 25 2.53 2.66 2.46

Table 6.3: FWHM of point sources near the top plane of the FOV of Profiles
Phantom.
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x y z

Plane 53 Source 1 1.79 ±0.75 mm 1.88 mm 2.06 mm
Plane 53 Source 2 1.92 1.92 2.25
Plane 53 Source 3 1.88 1.87 2.25
Plane 53 Source 4 2.68 2.74 2.98
Plane 53 Source 5 2.73 2.85 3.27
Plane 53 Source 6 2.63 2.25 3.01
Plane 53 Source 7 3.37 3.37 3.21
Plane 93 Source 1 1.90 2.00 1.93
Plane 93 Source 2 2.10 2.10 2.25
Plane 93 Source 3 2.10 2.10 2.43
Plane 93 Source 4 2.60 2.80 3.15
Plane 93 Source 5 2.50 2.65 2.99
Plane 93 Source 6 2.90 2.25 3.00
Plane 93 Source 7 3.18 3.14 3.35

Table 6.4: Volumetric Extent of the reconstructed point sources in the Noise
Phantom.

Integrated Activity† % Variation Peak Value† % Variation
Plane 53 Source 1 5.7453±0.0107 0.1868 0.1379±0.0016 1.2027
Plane 53 Source 2 4.8639±0.0111 0.2289 0.0903±0.0008 0.8860
Plane 53 Source 3 5.3688±0.0229 0.4264 0.0932±0.0007 0.7035
Plane 53 Source 4 5.0560±0.0843 1.6677 0.0652±0.0013 1.9743
Plane 53 Source 5 4.0320±0.0763 1.8915 0.0516±0.0007 1.4018
Plane 53 Source 6 4.8363±0.0097 0.2003 0.0513±0.0011 2.0908
Plane 53 Source 7 5.0800±0.0903 1.7779 0.0429±0.0008 1.8617
Plane 93 Source 1 6.2568±0.1221 1.9516 0.1265±0.0010 0.7637
Plane 93 Source 2 5.5635±0.0256 0.4611 0.0889±0.0012 1.3508
Plane 93 Source 3 5.5116±0.0587 1.0662 0.0833±0.0110 1.3254
Plane 93 Source 4 5.1003±0.0358 0.7025 0.0511±0.0181 3.5425
Plane 93 Source 5 4.7882±0.0572 1.1952 0.0444±0.0051 1.1490
Plane 93 Source 6 4.2605±0.0421 0.9877 0.0425±0.0011 2.5543
Plane 93 Source 7 4.7482±0.0722 1.5217 0.0375±0.0006 1.6085

Table 6.5: Variation in integrated point source activity and peak values of point
sources in Noise Phantom. † Units are arbitrary.
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Figure 6.16: Mean Voxel Value and Standard Deviation of a 3x3 voxel ROI region at
the center of each quadrant of the Defrise Phantom as a function of plane number.
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Figure 6.17: Mean Voxel Value and Standard Deviation of a 15×15 voxel ROI region
at the center of each quadrant of the Defrise Phantom as a function of plane number.
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Chapter 7

Conclusions and Future

Directions

In conclusion, I have developed fully 3D reconstruction procedures for data

from a PEM camera with irregular sampling, missing information and depth-of-

interaction measurement capability. I use even 0.075 cm radial bins in the projection

data to exploit the high sampling rate of the camera as well as to take advantage of

fast standard algorithms that calculate Fourier transforms. I modify the standard

3D reconstruction algorithm to accommodate the irregularity in the angular sam-

pling. In order to address ZEBs that result in the discretization of the DOI, I add

a small random number to the measured DOI to make it approximate a continuous

variable. I address the rest of the ZEBs that are due to the gaps between the mod-

ules by using the IRR algorithm that estimated the missing information by using a

priori information from the object. I use a simple positivity constraint as a priori

information. The reconstructed images of point sources and extended phantoms are

artifact-free. The point sources are essentially isotropic and have FWHMs that vary

from 1.50 mm to 3.00 mm depending on its position in the FOV. I do not observe

the adverse effects of radial elongation in the images.
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The algorithms that I have discussed in this dissertation show that image

reconstruction can be performed with data acquired from rectangular PET cameras

provided that DOI is available. It would be difficult to reconstruct images with a

rectangular geometry otherwise. The lack of sampling in the problem regions in

Radon space will generate artifacts in the FOV that will be difficult to correct.

In particular, streak artifacts will be prominent and image resolution will severely

degrade away from the center of the tomograph.

The methods that I have discussed in this thesis can be applied to other PET

cameras with non-standard geometries and can measure DOI. The main problem in

reconstructing images with PET with non-standard geometries is sampling. Properly

incorporating DOI information in the reconstruction solves most of the sampling

problems that arise from the geometry of the PET camera. The remaining details

can be addressed in a consistent manner as I have shown here.

The simulations that I performed in this dissertation, while including many

physical and realistic effects, assume a number of simplifications. For one, I have

assumed scatter free media in the FOV. While this assumption is acceptable for

qualitative reconstructions, scatter in the FOV needs to be simulated if quantita-

tive information is to be extracted from the images. The simulation that I have

implemented and described in this thesis allows for scatter in the FOV so that this

could certainly be one of the many future directions for this project. Modeling of

the generation of signals and measurement of the DOI can also be improved. I did

not model crystal-to-crystal variation in the modules and thus, I have not studied its

effect on the reconstructed images. The observed depth dependence in the prototype

modules built by the Instrumentation Group of the CFI at LBNL exhibited some

non-linearities which I did not take into account. I do not know the effects of this

non-linearity in the reconstructed images as well.

There are many other issues that will need to be addressed if true image

reconstruction is to be performed using data from the PEM camera. While it is true

that the attenuation map of the breast does not vary as much as that of the whole
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body, the small variation in the density of the breast may necessitate further study

on how attenuation correction will be performed. Assuming that the breast were

homogeneous may prove insufficient. Correcting the data for scatter will also play a

major part in image reconstruction with the PEM camera. Because scatter events

effectively misplace an event, they can degrade the resolution of the camera if they

are not handled properly. Normalization is yet another issue that I believe will be a

major concern for reconstructing true data from the PEM camera. The flood source

normalization data that I have consistently used throughout the dissertation will be

difficult to produce due to attenuation in the medium. A more realistic normalization

source may be a plane source that is tilted such that most, if not all, of the chords

are activated.

Finally, there are many avenues that can be taken at this point with regards

to reconstruction algorithm development. While I do not report on the 2D iterative

studies that I have done for the PEM camera, it would certainly be interesting

to see how the peculiarities and idiosyncrasies of the PEM will lend themselves

to a 3D iterative reconstruction, either in the more conventional histogram mode

or in the more recent list mode iterative techniques. In the analytic setting, it

would be interesting to see the results of the FOREX algorithm applied to the PEM

camera. FOREX rebins off-plane events into the proper 2D reconstruction planes.

The rebinning is performed in Fourier space in order to take advantage of the extra

information that is available in redundant 3D data. Once a complete set of consistent

2D sinograms are available, the image can be quickly reconstructed using standard

2D techniques. I believe that the missing information and issues that come about

because of the irregular sampling in the PEM camera can be addressed in a consistent

manner by the Fourier rebinning technique.
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Appendix A

Fourier Rebinning Method

The main idea behind Fourier Rebinning is that the Fourier transform of

the projections at an oblique angle θ is related to the Fourier transform of the in-

plane projections. Let the projection data be parametrized as p = p(s, φ, z, θ) where

s and φ are the familiar 2D sinogram variables, z is the midpoint of the chord

defining the projection point, and θ is the polar angle of the chord. Note that this

is different from the parametrization that I have used throughout this dissertation.

In particular, there is no notion of a projection plane in this parametrization of the

projection data. I have used the direction angles (θ, φ) to define the projection plane

and two orthogonal variables (u, v) to define the location of the projection point in

the plane. The projection data is, however, still defined by Eqn. 5.1

Pf(u = x⊥, ω) =
∫
R
dt f(x − tω); ξ · x = 0 (A.1)

but now, the parametrization is

[Pf ](s, φ, z, θ) =
∫
R
dt f(s cosφ− t sinφ, s sinφ+ t cosφ, z + t tan θ). (A.2)

The first step in FOREX is taking the Fourier transform of an off-plane

projection Pf(θ 6= 0) in the s and z variables.

[FsFzPf ](ks, kz, φ, θ)
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=
∫
ds e−isks

∫
dz e−izkz

∫
dt f(s cosφ− t sinφ, s sinφ+ t cosφ, z + t tan θ)

=
∫
ds e−isks

∫
dt e−ikz(−t tan θ) Fz(s cosφ− t sinφ, s sinφ+ t cosφ, kz) (A.3)

since Ff(x−a) = e−ikaF (k). The variables (s, t) are then transformed back into the

Cartesian coordinate variables, (x, y), by the rotation

 s

t


 =


 cosφ sinφ

− sinφ cosφ




 x

y


 (A.4)

so that Eqn. A.3 can be rewritten as

[FsFzPf ](ks, kz)

=
∫
dx

∫
dy e−iks(x cosφ+y sinφ) e−ikz tan θ(x sinφ−y cosφ) Fz(x, y, kz)

=
∫
dx e−ix(ks cosφ−kz tan θ sinφ)

∫
dy e−iy(ks sinφ+kz tan θ cosφ)Fz(x, y, kz)

= F (ks cosφ− kz tan θ sinφ, ks sinφ+ kz tan θ cosφ, kz). (A.5)

Note that the last expression is of the form F (k′x, k′y, kz). This is the Central Slice

Theorem again. Redefining

kz tan θ = ks tanσ

k′s = ks secσ (A.6)

we have

[FsFzPf ](ks, kz) = F (ks cosφ− ks tanσ sinφ, ks sinφ+ ks tanσ cosφ, kz)

= F (ks secσ cos(φ+ σ), ks secσ sin(φ+ σ), kz). (A.7)

Taking the Fourier transform with respect to φ

[FsFzPf ](ks, kz) =
∫
dφ e−iΦφ F (k′s cos(φ+ σ), k′s sin(φ+ σ), kz)

= eiΦσ
∫
dη e−iΦη F (k′s cos η, k′s sin η, kz). (A.8)
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Note that the final expression states that

FzFsFφPf(ks, kz,Φ, θ) = eiΦσFzFsFφPf(k′s, kz,Φ, 0). (A.9)

Therefore, the Fourier transform of the off-plane projections may be rebinned to the

Fourier transform of the in-plane projections which may then be reconstructed in

the 2D mode.
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